Hallmarks of artificial intelligence contributions to precision oncology

Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

Article  PubMed  Google Scholar 

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

Article  CAS  PubMed  Google Scholar 

Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateo, J. et al. Delivering precision oncology to patients with cancer. Nat. Med. 28, 658–665 (2022).

Article  CAS  PubMed  Google Scholar 

Jiang, P. et al. Big data in basic and translational cancer research. Nat. Rev. Cancer 22, 625–639 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dlamini, Z., Francies, F. Z., Hull, R. & Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 18, 2300–2311 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elemento, O., Leslie, C., Lundin, J. & Tourassi, G. Artificial intelligence in cancer research, diagnosis and therapy. Nat. Rev. Cancer 21, 747–752 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, S., Yang, J., Fong, S. & Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 471, 61–71 (2020).

Article  CAS  PubMed  Google Scholar 

Swanson, K., Wu, E., Zhang, A., Alizadeh, A. A. & Zou, J. From patterns to patients: advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell 186, 1772–1791 (2023).

Article  CAS  PubMed  Google Scholar 

Lång, K. et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 24, 936–944 (2023).

Article  PubMed  Google Scholar 

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).

Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

Article  Google Scholar 

Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).

Article  Google Scholar 

Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 1106–1114 (NeurIPS, 2012).

Sarker, I. H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 420 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (2017).

Minaee, S. et al. Large language models: a survey. Preprint at https://arxiv.org/abs/2402.06196 (2024).

Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

Article  CAS  PubMed  Google Scholar 

Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Cao, R. M. et al. Joint prostate cancer detection and Gleason score prediction in mp-MRI via FocalNet. IEEE Trans. Med. Imaging 38, 2496–2506 (2019).

Article  PubMed  Google Scholar 

Lu, M. T., Raghu, V. K., Mayrhofer, T., Aerts, H. & Hoffmann, U. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model. Ann. Intern. Med. 173, 704–713 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).

Article  CAS  PubMed  Google Scholar 

Areia, M. et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit. Health 4, E436–E444 (2022).

Article  CAS  PubMed  Google Scholar 

Qian, X. J. et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat. Biomed. Eng. 5, 522–532 (2021).

Article  PubMed  Google Scholar 

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, L. Y. et al. Health system-scale language models are all-purpose prediction engines. Nature 619, 357–362 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gunjur, A. et al. A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat. Med. 30, 797–809 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sammut, S. J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).

Article  CAS  PubMed  Google Scholar 

Chakraborty, S., Hosen, M. I., Ahmed, M. & Shekhar, H. U. Onco-multi-OMICS approach: a new frontier in cancer research. BioMed Res. Int. 2018, 9836256 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Chang, T.-G. et al. LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. Nat. Cancer 5, 1158–1175 (2024).

Article  PubMed  Google Scholar 

de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

Article  PubMed  Google Scholar 

Knudsen, A. B. et al. Estimated US cancer deaths prevented with increased use of lung, colorectal, breast, and cervical cancer screening. JAMA Netw. Open 6, e2344698 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Gregoor, A. M. S. et al. An artificial intelli

Comments (0)

No login
gif