Neoadjuvant cabozantinib for locally advanced nonmetastatic clear cell renal cell carcinoma: a phase 2 trial

Padala, S. A. et al. Epidemiology of renal cell carcinoma. World J. Oncol. 11, 79–87 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

Article  PubMed  Google Scholar 

King, S. C., Pollack, L. A., Li, J., King, J. B. & Master, V. A. Continued increase in incidence of renal cell carcinoma, especially in young patients and high grade disease: United States 2001 to 2010. J. Urol. 191, 1665–1670 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

Article  PubMed  Google Scholar 

Motzer, R. J. et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 20, 71–90 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Margulis, V., McDonald, M., Tamboli, P., Swanson, D. A. & Wood, C. G. Predictors of oncological outcome after resection of locally recurrent renal cell carcinoma. J. Urol. 181, 2044–2051 (2009).

Article  PubMed  Google Scholar 

Choueiri, T. K. et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 385, 683–694 (2021).

Article  CAS  PubMed  Google Scholar 

Garbe, C. et al. Neoadjuvant immunotherapy for melanoma is now ready for clinical practice. Nat. Med. 29, 1310–1312 (2023).

Article  CAS  PubMed  Google Scholar 

Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

Article  CAS  PubMed  Google Scholar 

Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esteban-Fabro, R. et al. Cabozantinib enhances anti-PD1 activity and elicits a neutrophil-based immune response in hepatocellular carcinoma. Clin. Cancer Res. 28, 2449–2460 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang, R. et al. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut 70, 1746–1757 (2021).

Article  CAS  PubMed  Google Scholar 

Patnaik, A. et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov. 7, 750–765 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, Y. et al. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer Sci. 110, 617–628 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal, S. K. et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur. Urol. 72, 557–564 (2017).

Article  CAS  PubMed  Google Scholar 

Tolaney, S. M. et al. Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist 22, 25–32 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khorrami, M. et al. Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features. Lung Cancer 135, 1–9 (2019).

Article  PubMed  Google Scholar 

Braman, N. M. et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 19, 57 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Bera, K., Velcheti, V. & Madabhushi, A. Novel quantitative imaging for predicting response to therapy: techniques and clinical applications. Am. Soc. Clin. Oncol. Educ. Book 38, 1008–1018 (2018).

Article  PubMed  Google Scholar 

Aguado, C. et al. Neoadjuvant treatment in non-small cell lung cancer: new perspectives with the incorporation of immunotherapy. World J. Clin. Oncol. 13, 314–322 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Liang, W. et al. Expert consensus on neoadjuvant immunotherapy for non-small cell lung cancer. Transl. Lung Cancer Res. 9, 2696–2715 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kim, K. H. et al. The first-week proliferative response of peripheral blood PD-1(+)CD8(+) T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin. Cancer Res. 25, 2144–2154 (2019).

Article  CAS  PubMed  Google Scholar 

Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlisle, J. W. et al. Clinical outcome following checkpoint therapy in renal cell carcinoma is associated with a burst of activated CD8 T cells in blood. J. Immunother. Cancer https://doi.org/10.1136/jitc-2022-004803 (2022).

Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prokhnevska, N. et al. CD8(+) T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124 e105 (2023).

Article  CAS  PubMed  Google Scholar 

Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 e1020 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Comments (0)

No login
gif