Döhner H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77.
Soleimani Samarkhazan H, et al. Unveiling the potential of CLL-1: a promising target for AML therapy. Biomark Res. 2025;13(1):28.
Article PubMed PubMed Central Google Scholar
Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.
Article PubMed PubMed Central CAS Google Scholar
Abdar Esfahani M, et al. The epigenetic revolution in hematology: from benchside breakthroughs to clinical transformations. Clin Exp Med. 2025;25(1):230.
Article PubMed PubMed Central CAS Google Scholar
Tyner JW, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526–31.
Article PubMed PubMed Central CAS Google Scholar
Noroozi Aghide A, Soleimani Samarkhazan H, Ahmadnezhad M. Effect of harmine alkaloid on the expression of P16 and DAPK in HL60 leukemia cell line. Paramed Sci Mil Health. 2016;11(3):28–33.
Trac QT, et al. Prediction model for drug response of acute myeloid leukemia patients. NPJ Precis Oncol. 2023;7(1):32.
Article PubMed PubMed Central CAS Google Scholar
van Galen P, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176(6):1265-1281.e24.
Article PubMed PubMed Central Google Scholar
Argelaguet R, et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21(1):111.
Article PubMed PubMed Central Google Scholar
Li S, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–9.
Article PubMed PubMed Central CAS Google Scholar
Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood. 2023;141(10):1119–35.
Article PubMed CAS Google Scholar
Kornauth C, et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 2022;12(2):372–87.
Pimenta DB, et al. The bone marrow microenvironment mechanisms in acute myeloid leukemia. Front Cell Dev Biol. 2021;9:764698.
Article PubMed PubMed Central Google Scholar
Tomasoni C, et al. A question of frame: the role of the bone marrow stromal niche in myeloid malignancies. Hemasphere. 2023;7(6):e896.
Article PubMed PubMed Central CAS Google Scholar
Soleimani Samarkhazan H, et al. Curcumin and acute myeloid leukemia: a golden hope, updated insights. Mol Biol Rep. 2025;52(1):583.
Article PubMed CAS Google Scholar
Pei S, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–51.
Article PubMed PubMed Central CAS Google Scholar
Pei YF, et al. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. 2020;3(1):608.
Article PubMed PubMed Central CAS Google Scholar
Pollyea DA, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24(12):1859–66.
Article PubMed PubMed Central CAS Google Scholar
Kim DDH, et al. The 17-gene stemness score associates with relapse risk and long-term outcomes following allogeneic haematopoietic cell transplantation in acute myeloid leukaemia. EJHaem. 2022;3(3):873–84.
Article PubMed PubMed Central CAS Google Scholar
Ng SW, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433–7.
Article PubMed CAS Google Scholar
Widman AJ, et al. Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment. Nat Med. 2024;30(6):1655–66.
Article PubMed PubMed Central CAS Google Scholar
Issa GC, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 2023;615(7954):920–4.
Article PubMed PubMed Central CAS Google Scholar
Danek, B., et al., Federated Learning for multi-omics: a performance evaluation in Parkinson’s disease. bioRxiv, 2024.
Morita K, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020;11(1):5327.
Article PubMed PubMed Central CAS Google Scholar
Li Z, et al. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia. 2024;38(12):2699–708.
Article PubMed CAS Google Scholar
Ley TJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.
Khouri MR, et al. Characteristics and clinical outcomes of patients with myeloid malignancies and cohesin mutations. Cancer. 2025;131(8):e35846.
Article PubMed CAS Google Scholar
Stratmann S, et al. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children. Leukemia. 2023;37(3):550–9.
Article PubMed CAS Google Scholar
Casado P, Cutillas PR. Proteomic characterization of acute myeloid leukemia for precision medicine. Mol Cell Proteomics. 2023;22(4):100517.
Article PubMed PubMed Central CAS Google Scholar
Weinstein JN, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.
Article PubMed PubMed Central Google Scholar
Bayani A, et al. Aptamer-based approaches in leukemia: a paradigm shift in targeted therapy. Clin Exp Med. 2025;25(1):186.
Article PubMed PubMed Central Google Scholar
Zeng AG, Bansal S, Jin L, Mitchell A, Chen WC, Abbas HA, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat med. 2022;28(6):1212–23.
Comments (0)