Integrating multi-omics approaches in acute myeloid leukemia (AML): Advancements and clinical implications

Döhner H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77.

Article  PubMed  Google Scholar 

Soleimani Samarkhazan H, et al. Unveiling the potential of CLL-1: a promising target for AML therapy. Biomark Res. 2025;13(1):28.

Article  PubMed  PubMed Central  Google Scholar 

Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abdar Esfahani M, et al. The epigenetic revolution in hematology: from benchside breakthroughs to clinical transformations. Clin Exp Med. 2025;25(1):230.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tyner JW, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526–31.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Noroozi Aghide A, Soleimani Samarkhazan H, Ahmadnezhad M. Effect of harmine alkaloid on the expression of P16 and DAPK in HL60 leukemia cell line. Paramed Sci Mil Health. 2016;11(3):28–33.

Google Scholar 

Trac QT, et al. Prediction model for drug response of acute myeloid leukemia patients. NPJ Precis Oncol. 2023;7(1):32.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van Galen P, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176(6):1265-1281.e24.

Article  PubMed  PubMed Central  Google Scholar 

Argelaguet R, et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21(1):111.

Article  PubMed  PubMed Central  Google Scholar 

Li S, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood. 2023;141(10):1119–35.

Article  PubMed  CAS  Google Scholar 

Kornauth C, et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 2022;12(2):372–87.

Article  PubMed  Google Scholar 

Pimenta DB, et al. The bone marrow microenvironment mechanisms in acute myeloid leukemia. Front Cell Dev Biol. 2021;9:764698.

Article  PubMed  PubMed Central  Google Scholar 

Tomasoni C, et al. A question of frame: the role of the bone marrow stromal niche in myeloid malignancies. Hemasphere. 2023;7(6):e896.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Soleimani Samarkhazan H, et al. Curcumin and acute myeloid leukemia: a golden hope, updated insights. Mol Biol Rep. 2025;52(1):583.

Article  PubMed  CAS  Google Scholar 

Pei S, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–51.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pei YF, et al. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. 2020;3(1):608.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pollyea DA, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24(12):1859–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim DDH, et al. The 17-gene stemness score associates with relapse risk and long-term outcomes following allogeneic haematopoietic cell transplantation in acute myeloid leukaemia. EJHaem. 2022;3(3):873–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ng SW, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433–7.

Article  PubMed  CAS  Google Scholar 

Widman AJ, et al. Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment. Nat Med. 2024;30(6):1655–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Issa GC, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 2023;615(7954):920–4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Danek, B., et al., Federated Learning for multi-omics: a performance evaluation in Parkinson’s disease. bioRxiv, 2024.

Morita K, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020;11(1):5327.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Z, et al. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia. 2024;38(12):2699–708.

Article  PubMed  CAS  Google Scholar 

Ley TJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

Article  PubMed  Google Scholar 

Khouri MR, et al. Characteristics and clinical outcomes of patients with myeloid malignancies and cohesin mutations. Cancer. 2025;131(8):e35846.

Article  PubMed  CAS  Google Scholar 

Stratmann S, et al. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children. Leukemia. 2023;37(3):550–9.

Article  PubMed  CAS  Google Scholar 

Casado P, Cutillas PR. Proteomic characterization of acute myeloid leukemia for precision medicine. Mol Cell Proteomics. 2023;22(4):100517.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Weinstein JN, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

Article  PubMed  PubMed Central  Google Scholar 

Bayani A, et al. Aptamer-based approaches in leukemia: a paradigm shift in targeted therapy. Clin Exp Med. 2025;25(1):186.

Article  PubMed  PubMed Central  Google Scholar 

Zeng AG, Bansal S, Jin L, Mitchell A, Chen WC, Abbas HA, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat med. 2022;28(6):1212–23.

Article  PubMed  CAS 

Comments (0)

No login
gif