Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, Parkin DM, Soerjomataram I, Bray F. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer. 2025;156(7):1336–46. https://doi.org/10.1002/ijc.35278.
Article PubMed CAS Google Scholar
Qian XJ, Wang JW, Liu JB, Yu X. The mediating role of miR-451/ETV4/MMP13 signaling axis on epithelialmesenchymal transition in promoting non-small cell lung cancer progression. Curr Mol Pharmacol. 2024;17:e210723218988. https://doi.org/10.2174/1874467217666230721123554.
Cai Y, Sheng Z, Dong Z, Wang J. EGFR inhibitor CL-387785 suppresses the progression of lung adenocarcinoma. Curr Mol Pharmacol. 2023;16(2):211–6. https://doi.org/10.2174/1874467215666220329212300.
Article PubMed CAS Google Scholar
Ullah A, Razzaq A, Alfaifi MY, Elbehairi SEI, Menaa F, Ullah N, Shehzadi S, Nawaz T, Iqbal H. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis. Curr Mol Pharmacol. 2024;17: e18761429269383. https://doi.org/10.2174/0118761429269383231119062233.
Article PubMed CAS Google Scholar
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94. https://doi.org/10.4065/83.5.584.
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.
Article PubMed CAS Google Scholar
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018;9(2): 117. https://doi.org/10.1038/s41419-017-0063-y.
Article PubMed PubMed Central Google Scholar
Little AG, Gay EG, Gaspar LE, Stewart AK. National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer. 2007;57(3):253–60. https://doi.org/10.1016/j.lungcan.2007.03.012.
Xu S, Wang Y, Ren F, Li X, Ren D, Dong M, Chen G, Song Z, Chen J. Impact of genetic alterations on outcomes of patients with stage I nonsmall cell lung cancer: an analysis of the cancer genome atlas data. Cancer Med. 2020;9(20):7686–94. https://doi.org/10.1002/cam4.3403.
Article PubMed PubMed Central CAS Google Scholar
Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Berger A, Hammerman P, Pugh T, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence M, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson B, Jänne P, Miller V, Pao W, Travis W, Pass H, Gabriel S, Lander E, Thomas R, Garraway L, Getz G, Meyerson M. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20. https://doi.org/10.1016/j.cell.2012.08.029.
Article PubMed PubMed Central CAS Google Scholar
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn M-J, Felip E, Lee J-S, Hellmann MD, Hamid O, Goldman JW, Soria J-C, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. https://doi.org/10.1056/NEJMoa1501824.
Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022;40(6):586–97. https://doi.org/10.1200/jco.21.01497.
Article PubMed CAS Google Scholar
Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S, Li S, Chen T, Poteete A, Estrada-Bernal A, Le AT, Truini A, Nilsson MB, Sun H, Roarty E, Goldberg SB, Brahmer JR, Altan M, Lu C, Papadimitrakopoulou V, Politi K, Doebele RC, Wong KK, Heymach JV. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018;24(5):638–46. https://doi.org/10.1038/s41591-018-0007-9.
Article PubMed PubMed Central CAS Google Scholar
Leighl NB, Page RD, Raymond VM, Daniel DB, Divers SG, Reckamp KL, Villalona-Calero MA, Dix D, Odegaard JI, Lanman RB, Papadimitrakopoulou VA. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–700. https://doi.org/10.1158/1078-0432.Ccr-19-0624.
Article PubMed CAS Google Scholar
Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22168661.
Article PubMed PubMed Central Google Scholar
Coulombe PA, Omary MB. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 2002;14(1):110–22. https://doi.org/10.1016/s0955-0674(01)00301-5.
Article PubMed CAS Google Scholar
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res. 2007;313(10):2021–32. https://doi.org/10.1016/j.yexcr.2007.03.005.
Article PubMed CAS Google Scholar
Oshima RG, Baribault H, Caulín C. Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev. 1996;15(4):445–71. https://doi.org/10.1007/bf00054012.
Article PubMed CAS Google Scholar
Koehler DR, Hannam V, Belcastro R, Steer B, Wen Y, Post M, Downey G, Tanswell AK, Hu J. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther. 2001;4(1):58–65. https://doi.org/10.1006/mthe.2001.0412.
Article PubMed CAS Google Scholar
Zhang J, Hu S, Li Y. KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. 2019. Biosci Rep. https://doi.org/10.1042/bsr20190884.
Fortier AM, Asselin E, Cadrin M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem. 2013;288(16):11555–71. https://doi.org/10.1074/jbc.M112.428920.
Article PubMed PubMed Central CAS Google Scholar
Lai YC, Cheng CC, Lai YS, Liu YH. Cytokeratin 18-associated Histone 3 modulation in hepatocellular carcinoma: a mini review. Cancer Genomics Proteomics. 2017;14(4):219–23. https://doi.org/10.21873/cgp.20033.
Article PubMed PubMed Central CAS Google Scholar
Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40(5):403–39. https://doi.org/10.1046/j.1365-2559.2002.01387.x.
Article PubMed CAS Google Scholar
Wang PB, Chen Y, Ding GR, Du HW, Fan HY. Keratin 18 induces proliferation, migration, and invasion in gastric cancer via the MAPK signalling pathway. Clin Exp Pharmacol Physiol. 2021;48(1):147–56. https://doi.org/10.1111/1440-1681.13401.
Article PubMed CAS Google Scholar
Makino T, Yamasaki M, Takeno A, Shirakawa M, Miyata H, Takiguchi S, Nakajima K, Fujiwara Y, Nishida T, Matsuura N, Mori M, Doki Y. Cytokeratins 18 and 8 are poor prognostic markers in patients with squamous cell carcinoma of the oesophagus. Br J Cancer. 2009;101(8):1298–306. https://doi.org/10.1038/sj.bjc.6605313.
Article PubMed PubMed Central CAS Google Scholar
Ueno T, Toi M, Bivén K, Bando H, Ogawa T, Linder S. Measurement of an apoptotic product in the sera of breast cancer patients. Eur J Cancer. 2003;39(6):769–74.
Article PubMed CAS Google Scholar
Demiray M, Ulukaya EE, Arslan M, Gokgoz S, Saraydaroglu O, Ercan I, Evrensel T, Manavoglu O. Response to neoadjuvant chemotherapy in breast cancer could be predictable by measuring a novel serum apoptosis product, caspase-cleaved cytokeratin 18: a prospective pilot study. Cancer Invest. 2006;24(7):669–76. https://doi.org/10.1080/07357900600981307.
Comments (0)