Pucher PH, Aggarwal R, Qurashi M, Darzi A. Meta-analysis of the effect of postoperative in-hospital morbidity on long-term patient survival. Br J Surg. 2014;101(12):1499–508.
Article PubMed CAS Google Scholar
Artinyan A, Orcutt ST, Anaya DA, Richardson P, Chen GJ, Berger DH. Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: a study of 12,075 patients. Ann Surg. 2015;261(3):497–505.
Tokunaga M, Kurokawa Y, Machida R, Sato Y, Takiguchi S, Doki Y, et al. Impact of postoperative complications on survival outcomes in patients with gastric cancer: exploratory analysis of a randomized controlled JCOG1001 trial. Gastric Cancer. 2021;24(1):214–23.
Kikuchi H, Miyata H, Konno H, Kamiya K, Tomotaki A, Gotoh M, et al. Development and external validation of preoperative risk models for operative morbidities after total gastrectomy using a Japanese web-based nationwide registry. Gastric Cancer. 2017;20(6):987–97.
Article PubMed PubMed Central Google Scholar
Kunisaki C, Miyata H, Konno H, Saze Z, Hirahara N, Kikuchi H, et al. Modeling preoperative risk factors for potentially lethal morbidities using a nationwide Japanese web-based database of patients undergoing distal gastrectomy for gastric cancer. Gastric Cancer. 2017;20(3):496–507.
Article PubMed CAS Google Scholar
Haga Y, Miyata H, Tsuburaya A, Gotoh M, Yoshida K, Konno H, et al. Development and validation of grade-based prediction models for postoperative morbidity in gastric cancer resection using a Japanese web-based nationwide registry. Ann Gastroenterol Surg. 2019;3(5):544–51.
Article PubMed PubMed Central Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Article PubMed CAS Google Scholar
Li Z, Wu X, Gao X, Shan F, Ying X, Zhang Y, et al. Development and validation of an artificial neural network prognostic model after gastrectomy for gastric carcinoma: an international multicenter cohort study. Cancer Med. 2020;9(17):6205–15.
Article PubMed PubMed Central CAS Google Scholar
Jiang Y, Liang X, Wang W, Chen C, Yuan Q, Zhang X, et al. Noninvasive prediction of occult peritoneal metastasis in gastric cancer using deep learning. JAMA Netw Open. 2021;4(1):e2032269.
Article PubMed PubMed Central Google Scholar
Bertsimas D, Margonis GA, Tang S, Koulouras A, Antonescu CR, Brennan MF, et al. An interpretable AI model for recurrence prediction after surgery in gastrointestinal stromal tumour: an observational cohort study. EClinMed. 2023;64:102200.
Bektaş M, Burchell GL, Bonjer HJ, van der Peet DL. Machine learning applications in upper gastrointestinal cancer surgery: a systematic review. Surg Endosc. 2023;37(1):75–89.
Sakamoto T, Goto T, Fujiogi M, Kawarai Lefor A. Machine learning in gastrointestinal surgery. Surg Today. 2022;52(7):995–1007.
Article PubMed CAS Google Scholar
Ren Y, Loftus TJ, Datta S, Ruppert MM, Guan Z, Miao S, et al. Performance of a machine learning algorithm using electronic health record data to predict postoperative complications and report on a mobile platform. JAMA Netw Open. 2022;5(5):e2211973.
Article PubMed PubMed Central Google Scholar
Lu S, Yan M, Li C, Yan C, Zhu Z, Lu W. Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy. Chin J Cancer Res. 2019;31(5):797–805.
Article PubMed PubMed Central Google Scholar
Shao S, Liu L, Zhao Y, Mu L, Lu Q, Qin J. Application of machine learning for predicting anastomotic leakage in patients with gastric adenocarcinoma who received total or proximal gastrectomy. J Pers Med. 2021. https://doi.org/10.3390/jpm11080748.
Article PubMed PubMed Central Google Scholar
Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. Tripod+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ (Clinical research ed). 2024;385:e078378.
Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14(2):101–12.
Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.
Article PubMed PubMed Central Google Scholar
Ravenel M, Joliat GR, Demartines N, Uldry E, Melloul E, Labgaa I. Machine learning to predict postoperative complications after digestive surgery: a scoping review. Br J Surg. 2023;110(12):1646–9.
Article PubMed PubMed Central Google Scholar
Wang J, Tozzi F, Ashraf Ganjouei A, Romero-Hernandez F, Feng J, Calthorpe L, et al. Machine learning improves prediction of postoperative outcomes after gastrointestinal surgery: a systematic review and meta-analysis. J Gastrointest Surg. 2024. https://doi.org/10.1016/j.gassur.2024.03.006.
Fukuyo R, Tokunaga M, Umebayashi Y, Saito T, Okuno K, Sato Y, et al. Deep learning-based diagnostic model for predicting complications after gastrectomy. Asian J Endosc Surg. 2023;16(2):210–7.
Shishido Y, Fujitani K, Yamamoto K, Hirao M, Tsujinaka T, Sekimoto M. C-reactive protein on postoperative day 3 as a predictor of infectious complications following gastric cancer resection. Gastric Cancer. 2016;19(1):293–301.
Article PubMed CAS Google Scholar
Tanaka H, Tamura T, Toyokawa T, Muguruma K, Kubo N, Sakurai K, et al. C-reactive protein elevation ratio as an early predictor of postoperative severe complications after laparoscopic gastrectomy for gastric cancer: a retrospective study. BMC Surg. 2019;19(1):114.
Article PubMed PubMed Central Google Scholar
Haahr-Raunkjaer C, Mølgaard J, Elvekjaer M, Rasmussen SM, Achiam MP, Jorgensen LN, et al. Continuous monitoring of vital sign abnormalities; association to clinical complications in 500 postoperative patients. Acta Anaesthesiol Scand. 2022;66(5):552–62.
Article PubMed PubMed Central Google Scholar
Kovoor JG, Bacchi S, Gupta AK, Stretton B, Malycha J, Reddi BA, et al. The Adelaide score: an artificial intelligence measure of readiness for discharge after general surgery. ANZ J Surg. 2023;93(9):2119–24.
Zain Z, Almadhoun M, Alsadoun L, Bokhari SFH. Leveraging Artificial Intelligence and Machine Learning to Optimize Enhanced Recovery After Surgery (ERAS) Protocols. Cureus. 2024;16(3):e56668.
Comments (0)