Spatial proteomics to discover aging-associated alterations in the renal tubulointerstitium

Garcia-Vence M, Chantada-Vazquez MDP, Sosa-Fajardo A, Agra R, de la Barcia A, Otero-Glez A, et al. Protein extraction from FFPE kidney tissue samples: A review of the literature and characterization of techniques. Front Med (Lausanne). 2021;8:657313.

Article  PubMed  Google Scholar 

Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, et al. High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol. 2019;13(11):2305–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741–53.

Article  CAS  PubMed  Google Scholar 

Coscia F, Doll S, Bech JM, Schweizer L, Mund A, Lengyel E, et al. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis. J Pathol. 2020;251(1):100–12.

Article  CAS  PubMed  Google Scholar 

Denic A, Glassock RJ, Rule AD. The kidney in normal aging: a comparison with chronic kidney disease. Clin J Am Soc Nephrol. 2022;17(1):137–9.

Article  PubMed  PubMed Central  Google Scholar 

Li L, He M, Tang X, Huang J, Li J, Hong X, et al. Proteomic landscape of the extracellular matrix in the fibrotic kidney. Kidney Int. 2023;103(6):1063–76.

Article  CAS  PubMed  Google Scholar 

Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, et al. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail. 2024;46(1): 2295431.

Article  PubMed  PubMed Central  Google Scholar 

Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.

Article  PubMed  Google Scholar 

Schmid H, Cohen CD, Henger A, Irrgang S, Schlondorff D, Kretzler M. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 2003;64(1):356–60.

Article  CAS  PubMed  Google Scholar 

Devuyst O, Bochud M. Uromodulin, kidney function, cardiovascular disease, and mortality. Kidney Int. 2015;88(5):944–6.

Article  CAS  PubMed  Google Scholar 

Walker RV, Yao Q, Xu H, Maranto A, Swaney KF, Ramachandran S, et al. Fibrocystin/polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis. Nat Commun. 2023;14(1):6513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sethi S, Palma LMP, Theis JD, Fervenza FC. Proteomic analysis of complement proteins in glomerular diseases. Kidney Int Rep. 2023;8(4):827–36.

Article  PubMed  PubMed Central  Google Scholar 

Kipp A, Marti HP, Babickova J, Nakken S, Leh S, Halden TAS, et al. Glomerular proteomic profiling reveals early differences between preexisting and de novo type 2 diabetes in human renal allografts. BMC Nephrol. 2023;24(1):254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaga H, Matsumura H, Suzuki T, Dohmae N, Odaka M, Komatsuda A, et al. Comparative proteomic analysis of glomerular proteins in primary and bucillamine-induced membranous nephropathy. Clin Proteom. 2022;19(1):26.

Article  CAS  Google Scholar 

Xiao M, Chi X, Zhu X, Xu Z, Zou Y, Peng Y, et al. Proteomic analysis of laser captured tubular tissues reveals complement activation and mitochondrial dysfunction in autoimmune related kidney diseases. Sci Rep. 2024;14(1):19311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paunas FTI, Finne K, Leh S, Marti HP, Berven F, Vikse BE. Proteomic signature of tubulointerstitial tissue predicts prognosis in IgAN. BMC Nephrol. 2022;23(1):118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

Article  PubMed  Google Scholar 

Lewis S, Chen L, Raghuram V, Khundmiri SJ, Chou CL, Yang CR, et al. SLC-omics of the kidney: solute transporters along the nephron. Am J Physiol Cell Physiol. 2021;321(3):C507–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franzen O, Gan LM, Bjorkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019;2019.

Ackermann BL, Morrison RD, Hill S, Westfall MD, Butts BD, Soper MD, et al. Targeted quantitative mass spectrometry analysis of protein biomarkers from previously stained single formalin-fixed paraffin-embedded tissue sections. Lab Invest. 2023;103(4): 100052.

Article  CAS  PubMed  Google Scholar 

Alfieri CM, Mattinzoli D, Ikehata M, Cresseri D, Moroni G, Vaira V, et al. Laser capture microdissection on formalin-fixed and paraffin-embedded renal transplanted biopsies: technical perspectives for clinical practice application. Exp Mol Pathol. 2020;116: 104516.

Article  CAS  PubMed  Google Scholar 

Buczak K, Ori A, Kirkpatrick JM, Holzer K, Dauch D, Roessler S, et al. Spatial tissue proteomics quantifies inter- and intratumor heterogeneity in hepatocellular carcinoma (HCC). Mol Cell Proteomics. 2018;17(4):810–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griesser E, Wyatt H, Ten Have S, Stierstorfer B, Lenter M, Lamond AI. Quantitative profiling of the human substantia nigra proteome from laser-capture microdissected FFPE tissue. Mol Cell Proteomics. 2020;19(5):839–51.

Article  PubMed  PubMed Central  Google Scholar 

Herrera JA, Mallikarjun V, Rosini S, Montero MA, Lawless C, Warwood S, et al. Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues. Clin Proteomics. 2020;17:24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pujari GP, Mangalaparthi KK, Madden BJ, Bhat FA, Charlesworth MC, French AJ, et al. A high-throughput workflow for FFPE tissue proteomics. J Am Soc Mass Spectrom. 2023;34(7):1225–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linz R, Barnes NL, Zimnicka AM, Kaplan JH, Eipper B, Lutsenko S. Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney. Am J Physiol-Renal Physiol. 2008;294(1):F53-61.

Article  CAS  PubMed  Google Scholar 

Picton ML, Moore PR, Mawer EB, Houghton D, Freemont AJ, Hutchison AJ, et al. Down-regulation of human osteoblast PTH/PTHRP receptor mRNA in end-stage renal failure. Kidney Int. 2000;58(4):1440–9.

Article  CAS  PubMed  Google Scholar 

Evenepoel P, Bover J, Urena Torres P. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int. 2016;90(6):1184–90.

Article  CAS  PubMed  Google Scholar 

Jin Y, Kim EN, Lim JH, Kim HD, Ban TH, Yang CW, et al. Role of aberrantly activated lysophosphatidic acid receptor 1 signaling mediated inflammation in renal aging. Cells. 2021;10(10): 2580.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, et al. Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol. 2009;20(6):1223–35.

Article  CAS  PubMed 

Comments (0)

No login
gif