The cellular effect of intermittent PTH treatment on bone remodeling and modeling in humans—a histomorphometry centered scoping review

Compston JE (2007) Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone 40:1447–1452. https://doi.org/10.1016/j.bone.2006.09.008

Article  PubMed  CAS  Google Scholar 

Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446. https://doi.org/10.1016/j.bone.2007.03.017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Chui KY (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703. https://doi.org/10.1210/er.2004-0006

Article  PubMed  CAS  Google Scholar 

Eriksen EF, Robins DA (2004) Teriparatide - a bone formation treatment for osteoporosis. Drugs of Today 40:935–948. https://doi.org/10.1358/dot.2004.40.11.872582

Article  PubMed  CAS  Google Scholar 

Potts JT (2005) Parathyroid hormone: past and present. J Endocrinol 187:311–325. https://doi.org/10.1677/joe.1.06057

Article  PubMed  CAS  Google Scholar 

Goltzman D (2018) Physiology of parathyroid hormone, endocrinol. Metab Clin North Am 47:743–758. https://doi.org/10.1016/j.ecl.2018.07.003

Article  Google Scholar 

Schwarz P, Jorgensen NR, Mosekilde L, Vestergaard P (2012) Effects of increasing age, dosage, and duration of PTH treatment on BMD increase - a meta-analysis. Calcif Tissue Int 90:165–173. https://doi.org/10.1007/s00223-011-9564-3

Article  PubMed  CAS  Google Scholar 

Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R (1993) Anabolic actions of parathyroid hormone on bone*. Endocr Rev 14:690–709. https://doi.org/10.1210/edrv-14-6-690

Article  PubMed  CAS  Google Scholar 

Brewer HB, Ronan R (1970) Bovine parathyroid hormone: amino acid sequence. Proc Natl Acad Sci U S A 67:1862–1869. https://doi.org/10.1073/pnas.67.4.1862

Article  PubMed  PubMed Central  CAS  Google Scholar 

Niall HD, Keutmann H, Sauer R, Hogan M, Dawson B, Aurbach G, Potts J (1970) The amino acid sequence of bovine parathyroid hormone I, Hoppe. Seylers. Z. Physiol. Chem. 351 (1970) 1586—1588. http://europepmc.org/abstract/MED/5531031.

Aurbach GD (1959) Isolation of parathyroid hormone after extraction with phenol. J Biol Chem 234(12):3179–81. https://doi.org/10.1016/S0021-9258(18)69644-9

Article  PubMed  CAS  Google Scholar 

Collip JB (1925) The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem 63:395–438. https://doi.org/10.1016/s0021-9258(18)85007-4

Article  CAS  Google Scholar 

Brown EM (1983) Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab 56:572–581. https://doi.org/10.1210/jcem-56-3-572

Article  PubMed  CAS  Google Scholar 

Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4:530–538. https://doi.org/10.1038/nrm1154

Article  PubMed  CAS  Google Scholar 

Conigrave AD, Franks AH, Brown EM, Quinn SJ (2002) L-Amino acid sensing by the calcium-sensing receptor: a general mechanism for coupling protein and calcium metabolism? Eur J Clin Nutr 56:1072–1080. https://doi.org/10.1038/sj.ejcn.1601463

Article  PubMed  CAS  Google Scholar 

Fermor B, Skerry TM (1995) PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res 10:1935–1943. https://doi.org/10.1002/jbmr.5650101213

Article  PubMed  CAS  Google Scholar 

Sneddon WB, Magyar CE, Willick GE, Syme CA, Galbiati F, Bisello A, Friedman PA (2004) Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: conditional efficacy of PTH peptide fragments. Endocrinology 145:2815–2823. https://doi.org/10.1210/en.2003-1185

Article  PubMed  CAS  Google Scholar 

Garabedian M, Holick MF, Deluca HF, Boyle IT (1972) Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci U S A 69:1673–1676. https://doi.org/10.1073/pnas.69.7.1673

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tanaka Y, DeLuca HF (1984) Rat renal 25-hydroxyvitamin D3 l- and 25-hydroxylases: their in vivo regulation. Am J Physiol - Endocrinol Metab 246:E123–E207

Article  Google Scholar 

Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Suda T, DeLuca HF (1998) Parathyroid hormone activation of the 25-hydroxyvitamin D3–1α-hydroxylase gene promoter. Proc Natl Acad Sci U S A 95:1387–1391. https://doi.org/10.1073/pnas.95.4.1387

Article  PubMed  PubMed Central  CAS  Google Scholar 

Datta NS, Abou-Samra AB (2009) PTH and PTHrP signaling in osteoblasts. Cell Signal 21:1245–1254. https://doi.org/10.1016/j.cellsig.2009.02.012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mannstadt M, Jüppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol - Ren Physiol 277:F665–F675. https://doi.org/10.1152/ajprenal.1999.277.5.f665

Article  CAS  Google Scholar 

Silva BC, Bilezikian JP (2015) Anabolic and catabolic pathways of parathyroid hormone on the skeleton. Parathyroids Basic Clin. Concepts (Third Ed.) pp 233–244. https://doi.org/10.1016/B978-0-12-397166-1.00015-1

Rouleau MF, Mitchell J, Goltzman D (1988) In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast*. Endocrinology 123:187–191. https://doi.org/10.1210/endo-123-1-187

Article  PubMed  CAS  Google Scholar 

Hattner R, Epker BN, Frost HM (1965) Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206:489–490. https://doi.org/10.1038/206489a0

Article  PubMed  CAS  Google Scholar 

Parfitt AM (1993) Bone age, mineral density, and fatigue damage. Calcif Tissue Int 53:S82–S86. https://doi.org/10.1007/BF01673408

Article  PubMed  Google Scholar 

Andersen TL, Abdelgawad ME, Kristensen HB, Hauge EM, Rolighed L, Bollerslev J, Kjærsgaard-Andersen P, Delaisse JM (2013) Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol 183:235–246. https://doi.org/10.1016/j.ajpath.2013.03.006

Article  PubMed  CAS  Google Scholar 

Lassen NE, Andersen TL, Pløen GG, Søe K, Hauge EM, Harving S, Eschen GE, Delaisse JM (2017) Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. J Bone Mineral Res 32(7):1395–405. https://doi.org/10.1002/jbmr.3091

Article  CAS  Google Scholar 

Abdelgawad ME, Delaisse JM, Hinge M, Jensen PR, Alnaimi RW, Rolighed L, Engelholm LH, Marcussen N, Andersen TL (2016) Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol 145:603–615. https://doi.org/10.1007/s00418-016-1414-y

Article  PubMed  CAS  Google Scholar 

Borggaard XG, Nielsen MH, Delaisse JM, Andreasen CM, Andersen TL (2022) Spatial organization of osteoclastic coupling factors and their receptors at human bone remodeling sites. Front Mol Biosci 9:1–12. https://doi.org/10.3389/fmolb.2022.896841

Article  CAS  Google Scholar 

Comments (0)

No login
gif