Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.
Article PubMed PubMed Central Google Scholar
Ette EI, Williams PJ. Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother. 2004;38(10):1702–6.
Yamada M, Tang J, Lugo-Martinez J, Hodzic E, Shrestha R, Saha A, et al. Ultra high-dimensional nonlinear feature selection for big biological data. IEEE Trans Knowl Data Eng. 2018;30(7):1352–65.
Mao J, Chen Y, Xu L, Chen W, Chen B, Fang Z, et al. Applying machine learning to the pharmacokinetic modeling of cyclosporine in adult renal transplant recipients: a multi-method comparison. Front Pharmacol. 2022;13:1016399.
Article PubMed PubMed Central CAS Google Scholar
Song L, Huang CR, Pan SZ, Zhu JG, Cheng ZQ, Yu X, et al. A model based on machine learning for the prediction of cyclosporin A trough concentration in Chinese allo-HSCT patients. Expert Rev Clin Pharmacol. 2023;16(1):83–91.
Article PubMed CAS Google Scholar
Woillard JB, Labriffe M, Prémaud A, Marquet P. Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: the example of tacrolimus. Pharmacol Res. 2021;167: 105578.
Article PubMed CAS Google Scholar
Storås AM, Åsberg A, Halvorsen P, Riegler MA, Strümke I, editors. Predicting tacrolimus exposure in kidney transplanted patients using machine learning. In: 2022 IEEE 35th international symposium on computer-based medical systems (CBMS); 21–23 July 2022, Shenzhen.
Zhu X, Zhang M, Wen Y, Shang D. Machine learning advances the integration of covariates in population pharmacokinetic models: valproic acid as an example. Front Pharmacol. 2022;13: 994665.
Article PubMed PubMed Central CAS Google Scholar
Ma P, Shang S, Huang Y, Liu R, Yu H, Zhou F, et al. Joint use of population pharmacokinetics and machine learning for prediction of valproic acid plasma concentration in elderly epileptic patients. Eur J Pharm Sci. 2024;201: 106876.
Article PubMed CAS Google Scholar
Destere A, Marquet P, Gandonnière CS, Åsberg A, Loustaud-Ratti V, Carrier P, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–65.
Article PubMed CAS Google Scholar
Li G, Sun Y, Zhu L. Application of machine learning combined with population pharmacokinetics to improve individual prediction of vancomycin clearance in simulated adult patients. Front Pharmacol. 2024;15:1352113.
Article PubMed PubMed Central CAS Google Scholar
Ma P, Shang S, Liu R, Dong Y, Wu J, Gu W, et al. Prediction of teicoplanin plasma concentration in critically ill patients: a combination of machine learning and population pharmacokinetics. J Antimicrob Chemother. 2024;79(11):2815–27.
Article PubMed CAS Google Scholar
Fu Q, Jing Y, Liu Mr G, Jiang Mr X, Liu H, Kong Y, et al. Machine learning-based method for tacrolimus dose predictions in Chinese kidney transplant perioperative patients. J Clin Pharm Ther. 2022;47(5):600–8.
Article PubMed CAS Google Scholar
Stankevičiūtė K, Woillard JB, Peck RW, Marquet P, van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin Pharmacokinet. 2023;62(11):1551–65.
Damnjanović I, Tsyplakova N, Stefanović N, Tošić T, Catić-Đorđević A, Karalis V. Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in pediatric population. Ther Adv Drug Saf. 2023;14:20420986231181336.
Article PubMed PubMed Central Google Scholar
Liu Y, Kuang Y, Hai M, Cui C, Liu D, Yang G. Model-informed dosing regimen of ticagrelor in Chinese patients with acute coronary syndrome. Clin Pharmacol Ther. 2023;114(6):1342–9.
Article PubMed CAS Google Scholar
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.
Hu PJ-H, Wei C-P, Cheng T-H, Chen J-X. Predicting adequacy of vancomycin regimens: a learning-based classification approach to improving clinical decision making. Decis Support Syst. 2007;43(4):1226–41.
Ponthier L, Ensuque P, Destere A, Marquet P, Labriffe M, Jacqz-Aigrain E, et al. Optimization of vancomycin initial dose in term and preterm neonates by machine learning. Pharm Res. 2022;39(10):2497–506.
Article PubMed CAS Google Scholar
Bououda M, Uster DW, Sidorov E, Labriffe M, Marquet P, Wicha SG, et al. A machine learning approach to predict interdose vancomycin exposure. Pharm Res. 2022;39(4):721–31.
Article PubMed CAS Google Scholar
Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al. Use of machine learning for dosage individualization of vancomycin in neonates. Clin Pharmacokinet. 2023;62(8):1105–16.
Article PubMed CAS Google Scholar
Kim D, Choi HS, Lee D, Kim M, Kim Y, Han SS, et al. A deep learning-based approach for prediction of vancomycin treatment monitoring: retrospective study among patients with critical illness. JMIR Form Res. 2024;8: e45202.
Article PubMed PubMed Central Google Scholar
Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacometrics Syst Pharmacol. 2021;10(10):1150–60.
Article PubMed PubMed Central CAS Google Scholar
Ma P, Ma H, Liu R, Wen H, Li H, Huang Y, et al. Prediction of vancomycin plasma concentration in elderly patients based on multi-algorithm mining combined with population pharmacokinetics. Sci Rep. 2024;14(1):27165.
Article PubMed PubMed Central CAS Google Scholar
Chen K, Wang C, Wei Y, Ma S, Huang W, Dong Y, et al. Machine learning and population pharmacokinetics: a hybrid approach for optimizing vancomycin therapy in sepsis patients. Antimicrob Chemother. 2025;13(5): 1-13.
Verhaeghe J, Dhaese SAM, De Corte T, Vander Mijnsbrugge D, Aardema H, Zijlstra JG, et al. Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients. BMC Med Inform Decis Mak. 2022;22(1):224.
Article PubMed PubMed Central Google Scholar
Tang BH, Guan Z, Allegaert K, Wu YE, Manolis E, Leroux S, et al. Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction. Clin Pharmacokinet. 2021;60(11):1435–48.
Article PubMed CAS Google Scholar
Kondo S, Oda K, Kaneko T, Jono H, Saito H. Teicoplanin 24-h loading dose regimen using a decision tree model to target serum trough concentration of 15–30 μg/mL: a retrospective study. J Infect Chemother. 2025;31(2): 102564.
Article PubMed CAS Google Scholar
Liao R, Chen L, Cheng X, Li H, Wang T, Dong Y, et al. Estimation of linezolid exposure in patients with hepatic impairment using machine learning based on a population pharmacokinetic model. Eur J Clin Pharmacol. 2024;80(8):1241–51.
Tang BH, Fu SM, Tian LY, Zhang XF, Yao BF, Zhang W, et al. Machine learning approach for dosage individualization of azithromycin in children with community-acquired pneumonia. Br J Clin Pharmacol. 2025. https://doi.org/10.1002/bcp.70050.
Smith NM, Lenhard JR, Boissonneault KR, Landersdorfer CB, Bulitta JB, Holden PN, et al. Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2020;26(9):1207–13.
Article PubMed PubMed Central CAS Google Scholar
Tolle KM, Chen H, Chow H-H. Estimating drug/plasma concentration levels by applying neural networks to pharmacokinetic data sets. Decis Support Syst. 2000;30(2):139–51.
Comments (0)