D’Mello SR, Cruz CN, Chen ML, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12(6):523–9.
Article CAS PubMed Google Scholar
Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41.
Article CAS PubMed Google Scholar
Barenholz Y. Doxil(R)—The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.
Article CAS PubMed Google Scholar
Nagpal S, Braner S, Modh H, Tan AXX, Mast MP, Chichakly K, et al. A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm. 2020;153:257–72.
Article CAS PubMed Google Scholar
Smith JA, Costales AB, Jaffari M, Urbauer DL, Frumovitz M, Kutac CK, et al. Is it equivalent? Evaluation of the clinical activity of single agent Lipodox(R) compared to single agent Doxil(R) in ovarian cancer treatment. J Oncol Pharm Pract. 2016;22(4):599–604.
Article CAS PubMed Google Scholar
Pai AB. Evaluating plasma pharmacokinetics of intravenous iron formulations: judging books by their covers? Clin Pharmacokinet. 2015;54(4):323–4.
Goetsch AT, Moore CV, Minnich V. Observations on the effect of massive doses of iron given intravenously to patients with hypochromic anemia. Blood. 1946;1(2):129–42.
Article CAS PubMed Google Scholar
Neu HM, Alexishin SA, Brandis JEP, Williams AMC, Li W, Sun D, et al. Snapshots of iron speciation: tracking the fate of iron nanoparticle drugs via a liquid chromatography-inductively coupled plasma-mass spectrometric approach. Mol Pharm. 2019;16(3):1272–81.
Article CAS PubMed PubMed Central Google Scholar
Garbowski MW, Cabantchik I, Hershko C, Hider R, Porter JB. The clinical relevance of detectable plasma iron species in iron overload states and subsequent to intravenous iron–carbohydrate administration. Am J Hematol. 2023;98(3):533–40
Arsiwala T, Vogt AS, Barton AE, Manolova V, Funk F, Flühmann B, et al. Kupffer cells and blood monocytes orchestrate the clearance of iron–carbohydrate nanoparticles from serum. Int J Mol Sci. 2022;23(5).
Funk F, Weber K, Nyffenegger N, Fuchs JA, Barton A. Tissue biodistribution of intravenous iron–carbohydrate nanomedicines differs between preparations with varying physicochemical characteristics in an anemic rat model. Eur J Pharm Biopharm. 2022;174:56–76.
Article CAS PubMed Google Scholar
Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126493.
Article PubMed PubMed Central Google Scholar
Tao G, Chityala PK, Li L, Lin Z, Ghose R. Development of a physiologically based pharmacokinetic model to predict irinotecan disposition during inflammation. Chem Biol Interact. 2022;360: 109946.
Article CAS PubMed Google Scholar
Garbowski MW, Bansal S, Porter JB, Mori C, Burckhardt S, Hider RC. Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways. Haematologica. 2021;106(11):2885–96 (Online ahead of print).
Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171(17):3963–79.
Article CAS PubMed PubMed Central Google Scholar
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, et al. Critical nanomaterial attributes of iron–carbohydrate nanoparticles: leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci. 2023;188: 106521.
Article CAS PubMed Google Scholar
Krupnik L, Avaro J, Liebi M, Anaraki NI, Kohlbrecher J, Sologubenko A, et al. Iron–carbohydrate complexes treating iron anaemia: understanding the nano-structure and interactions with proteins through orthogonal characterisation. J Control Release. 2024;368:566–79.
Article CAS PubMed Google Scholar
Wu Y, Petrochenko P, Chen L, Wong SY, Absar M, Choi S, et al. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy. Int J Pharm. 2016;505(1–2):167–74.
Article CAS PubMed Google Scholar
Digigow R, Burgert M, Luechinger M, Sologubenko A, Rzepiela AJ, Handschin S, et al. Nano-scale characterization of iron–carbohydrate complexes by cryogenic scanning transmission electron microscopy: building the bridge to biorelevant characterization. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e36749.
Article PubMed PubMed Central Google Scholar
Zou P, Tyner K, Raw A, Lee S. Physicochemical characterization of iron carbohydrate colloid drug products. AAPS J. 2017;19(5):1359–76.
Article CAS PubMed Google Scholar
Jahn MR, Andreasen HB, Futterer S, Nawroth T, Schunemann V, Kolb U, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm. 2011;78(3):480–91.
Article CAS PubMed Google Scholar
Burgert M, Marques CB, Borchard G, Philipp E, Wilhelm M, Alston A, et al. Dynamic Light scattering analysis for the determination of the particle size of iron–carbohydrate complexes. J Vis Exp. 2023;(197).
Di Francesco T, Sublet E, Borchard G. Nanomedicines in clinical practice: are colloidal iron sucrose ready-to-use intravenous solutions interchangeable? Eur J Pharm Sci. 2019;131:69–74.
Pai AB, Meyer DE, Bales BC, Cotero VE, Pai MP, Zheng N, et al. Performance of redox active and chelatable iron assays to determine labile iron release from intravenous iron formulations. Clin Transl Sci. 2017;10(3):194–200.
Article CAS PubMed PubMed Central Google Scholar
Pai AB, Pai MP, Meyer DE, Bales BC, Cotero VE, Zheng N, et al. In vitro and in vivo DFO-chelatable labile iron release profiles among commercially available intravenous iron nanoparticle formulations. Regul Toxicol Pharmacol. 2018;97:17–23.
Article CAS PubMed PubMed Central Google Scholar
Balakrishnan VS, Rao M, Kausz AT, Brenner L, Pereira BJ, Frigo TB, et al. Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Invest. 2009;39(6):489–96.
Article CAS PubMed Google Scholar
Nikravesh N, Borchard G, Hofmann H, Philipp E, Fluhmann B, Wick P. Factors influencing safety and efficacy of intravenous iron–carbohydrate nanomedicines: From production to clinical practice. Nanomedicine. 2020;26: 102178.
Article CAS PubMed Google Scholar
Sevimli G, Alston AE, Funk F, Flühmann B, Malli R, Graier WF, et al. Probing subcellular iron availability with genetically encoded nitric oxide biosensors. Biosensors. 2022. https://doi.org/10.3390/bios12100903.
Article PubMed PubMed Central Google Scholar
Beshara S, Lundqvist H, Sundin J, Lubberink M, Tolmachev V, Valind S, et al. Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: a study using positron emission tomography. Br J Haematol. 1999;104(2):296–302.
Article CAS PubMed Google Scholar
Henderson PA, Hillman RS. Characteristics of iron dextran utilization in man. Blood. 1969;34(3):357–75.
Article CAS PubMed Google Scholar
Mitchell S, Mendes P. A computational model of liver iron metabolism. PLoS Comput Biol. 2013;9(11): e1003299.
Article PubMed PubMed Central Google Scholar
Saboor M, Zehra A, Hamali HA, Mobarki AA. Revisiting iron metabolism, iron homeostasis and iron deficiency anemia. Clin Lab. 2021;67(3).
Sarkar J, Potdar AA, Saidel GM. Whole-body iron transport and metabolism: mechanistic, multi-scale model to improve treatment of anemia in chronic kidney disease. PLoS Comput Biol. 2018;14(4): e1006060.
Article PubMed PubMed Central Google Scholar
Funk FWK, Nyffenegger N, Fuchs JA, Barton A. Tissue biodistribution of intravenous iron–carbohydrate nanomedicines differs between preparations with varying physicochemical characteristics in an anemic rat model. Eur J Pharm Biopharm. 2022. https://doi.org/10.1016/j.ejpb.2022.03.006.
Comments (0)