Hyams J, Crandall W, Kugathasan S, Griffiths A, Olson A, Johanns J, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132(3):863–73 (quiz 1165-6).
Article PubMed CAS Google Scholar
van Rheenen PF, Aloi M, Assa A, Bronsky J, Escher JC, Fagerberg UL, et al. The medical management of paediatric Crohn’s disease: an ECCO-ESPGHAN guideline update. J Crohns Colitis. 2020;15:171–94.
Wang KY, Heikal OS, van Rheenen PF, Touw DJ, Bourgonje AR, Mian P. Clinical and biochemical factors associated with infliximab pharmacokinetics in paediatric patients with inflammatory bowel disease. J Clin Med. 2025;14(3):845.
Article PubMed PubMed Central CAS Google Scholar
Hamalainen A, Sipponen T, Kolho KL. Serum infliximab concentrations in pediatric inflammatory bowel disease. Scand J Gastroenterol. 2013;48(1):35–41.
Alsoud D, Moes D, Wang Z, Soenen R, Layegh Z, Barclay M, et al. Best practice for therapeutic drug monitoring of infliximab: position statement from the international association of therapeutic drug monitoring and clinical toxicology. Ther Drug Monit. 2024;46(3):291–308.
Article PubMed CAS Google Scholar
Lega S, Bramuzzo M, Dubinsky MC. Therapeutic drug monitoring in pediatric IBD: current application and future perspectives. Curr Med Chem. 2018;25(24):2840–54.
Article PubMed CAS Google Scholar
Samuels A, Whaley KG, Minar P. Precision dosing of anti-TNF therapy in pediatric inflammatory bowel disease. Curr Gastroenterol Rep. 2023;25(11):323–32.
Article PubMed PubMed Central Google Scholar
Hoelz H, Bragagna L, Litwin A, Koletzko S, Le Thi TG, Schwerd T. Pediatric IBD patients treated with Infliximab and proactive drug monitoring benefit from early concomitant immunomodulatory therapy: a retrospective analysis of a 10-year real-life cohort. Inflamm Bowel Dis. 2024;30(11):2004–18.
Xiong Y, Mizuno T, Colman R, Hyams J, Noe JD, Boyle B, et al. Real-world infliximab pharmacokinetic study informs an electronic health record-embedded dashboard to guide precision dosing in children with Crohn’s disease. Clin Pharmacol Ther. 2021;109(6):1639–47.
Article PubMed CAS Google Scholar
Colman RJ, Samuels A, Mizuno T, Punt N, Vinks AA, Minar P. Model-informed precision dosing for biologics is now available at the bedside for patients with inflammatory bowel disease. Inflamm Bowel Dis. 2023;29(8):1342–6.
Samuels A, Irie K, Mizuno T, Reifenberg J, Punt N, Vinks AA, et al. Integrating early response biomarkers in pharmacokinetic models: a novel method to individualize the initial infliximab dose in patients with Crohn’s disease. Clin Transl Sci. 2025;18(2): e70086.
Article PubMed PubMed Central CAS Google Scholar
Schrapel C, Kovar L, Selzer D, Hofmann U, Tran F, Reinisch W, et al. External model performance evaluation of twelve infliximab population pharmacokinetic models in patients with inflammatory bowel disease. Pharmaceutics. 2021;13(9):1368.
Article PubMed PubMed Central Google Scholar
Dubinsky MC, Mendiolaza ML, Phan BL, Moran HR, Tse SS, Mould DR. Dashboard-driven accelerated infliximab induction dosing increases infliximab durability and reduces immunogenicity. Inflamm Bowel Dis. 2022;28(9):1375–85.
Poweleit EA, Vinks AA, Mizuno T. Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. Ther Drug Monit. 2023;45(2):143–50.
Article PubMed PubMed Central Google Scholar
Stankeviciute K, Woillard JB, Peck RW, Marquet P, van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin Pharmacokinet. 2023;62(11):1551–65.
Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, et al. Machine learning: a new approach for dose individualization. Clin Pharmacol Ther. 2024;115(4):727–44.
Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.
Hughes JH, Tong DMH, Burns V, Daly B, Razavi P, Boelens JJ, et al. Clinical decision support for chemotherapy-induced neutropenia using a hybrid pharmacodynamic/machine learning model. CPT Pharmacomet Syst Pharmacol. 2023;12(11):1764–76.
Chen K, Wang C, Wei Y, Ma S, Huang W, Dong Y, et al. Machine learning and population pharmacokinetics: a hybrid approach for optimizing vancomycin therapy in sepsis patients. Microbiol Spectr. 2025;31: e0049925.
Destere A, Marquet P, Gandonniere CS, Asberg A, Loustaud-Ratti V, Carrier P, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with Iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–65.
Article PubMed CAS Google Scholar
Destere A, Marquet P, Labriffe M, Drici MD, Woillard JB. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.
Article PubMed CAS Google Scholar
Le Louedec F, Puisset F, Thomas F, Chatelut E, White-Koning M. Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open-source R package mapbayr. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1208–20.
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco: Association for Computing Machinery; 2016. p. 785–94.
Kyle TB. mrgsolve: Simulate from ODE-Based Models. 2024.
Felicien. mapbayr: MAP-Bayesian Estimation of PK Parameters. 2023.
David M, Evgenia D, Kurt H, Andreas W, Friedrich L. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2024.
Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth ed. New York; 2002.
Andy L, Matthew W. Classification and Regression by randomForest; 2002.
Donagher J, Martin JH, Barras MA. Individualised medicine: why we need Bayesian dosing. Intern Med J. 2017;47(5):593–600.
Heikal OS, van Rheenen PF, Touw DJ, Kosterink JGW, Maurer M, Koomen JV, et al. Infliximab in paediatric inflammatory bowel disease: external evaluation of population pharmacokinetic models. Br J Clin Pharmacol. 2024;90(9):2200–14.
Article PubMed CAS Google Scholar
Tootooni MS, Barreto EF, Wutthisirisart P, Kashani KB, Pasupathy KS. Determining steady-state trough range in vancomycin drug dosing using machine learning. J Crit Care. 2024;82: 154784.
Article PubMed PubMed Central CAS Google Scholar
Jian C, Chen S, Wang Z, Zhou Y, Zhang Y, Li Z, et al. Predicting delayed methotrexate elimination in pediatric acute lymphoblastic leukemia patients: an innovative web-based machine learning tool developed through a multicenter, retrospective analysis. BMC Med Inform Decis Mak. 2023;23(1):148.
Article PubMed PubMed Central Google Scholar
Kang CY, Yoon JH. Current challenges in adopting machine learning to critical care and emergency medicine. Clin Exp Emerg Med. 2023;10(2):132–7.
Article PubMed PubMed Central Google Scholar
Ganatra HA. Machine learning in pediatric healthcare: current trends, challenges, and future directions. J Clin Med. 2025;14(3):807.
Article PubMed PubMed Central CAS Google Scholar
Maier C, de Wiljes J, Hartung N, Kloft C, Huisinga W. A continued learning approach for model-informed precision dosing: updating models in clinical practice. CPT Pharmacomet Syst Pharmacol. 2022;11(2):185–98.
Comments (0)