Hybrid Population Pharmacokinetic–Machine Learning Modeling to Predict Infliximab Pharmacokinetics in Pediatric and Young Adult Patients with Crohn’s Disease

Hyams J, Crandall W, Kugathasan S, Griffiths A, Olson A, Johanns J, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132(3):863–73 (quiz 1165-6).

Article  PubMed  CAS  Google Scholar 

van Rheenen PF, Aloi M, Assa A, Bronsky J, Escher JC, Fagerberg UL, et al. The medical management of paediatric Crohn’s disease: an ECCO-ESPGHAN guideline update. J Crohns Colitis. 2020;15:171–94.

Article  Google Scholar 

Wang KY, Heikal OS, van Rheenen PF, Touw DJ, Bourgonje AR, Mian P. Clinical and biochemical factors associated with infliximab pharmacokinetics in paediatric patients with inflammatory bowel disease. J Clin Med. 2025;14(3):845.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hamalainen A, Sipponen T, Kolho KL. Serum infliximab concentrations in pediatric inflammatory bowel disease. Scand J Gastroenterol. 2013;48(1):35–41.

Article  PubMed  Google Scholar 

Alsoud D, Moes D, Wang Z, Soenen R, Layegh Z, Barclay M, et al. Best practice for therapeutic drug monitoring of infliximab: position statement from the international association of therapeutic drug monitoring and clinical toxicology. Ther Drug Monit. 2024;46(3):291–308.

Article  PubMed  CAS  Google Scholar 

Lega S, Bramuzzo M, Dubinsky MC. Therapeutic drug monitoring in pediatric IBD: current application and future perspectives. Curr Med Chem. 2018;25(24):2840–54.

Article  PubMed  CAS  Google Scholar 

Samuels A, Whaley KG, Minar P. Precision dosing of anti-TNF therapy in pediatric inflammatory bowel disease. Curr Gastroenterol Rep. 2023;25(11):323–32.

Article  PubMed  PubMed Central  Google Scholar 

Hoelz H, Bragagna L, Litwin A, Koletzko S, Le Thi TG, Schwerd T. Pediatric IBD patients treated with Infliximab and proactive drug monitoring benefit from early concomitant immunomodulatory therapy: a retrospective analysis of a 10-year real-life cohort. Inflamm Bowel Dis. 2024;30(11):2004–18.

Article  PubMed  Google Scholar 

Xiong Y, Mizuno T, Colman R, Hyams J, Noe JD, Boyle B, et al. Real-world infliximab pharmacokinetic study informs an electronic health record-embedded dashboard to guide precision dosing in children with Crohn’s disease. Clin Pharmacol Ther. 2021;109(6):1639–47.

Article  PubMed  CAS  Google Scholar 

Colman RJ, Samuels A, Mizuno T, Punt N, Vinks AA, Minar P. Model-informed precision dosing for biologics is now available at the bedside for patients with inflammatory bowel disease. Inflamm Bowel Dis. 2023;29(8):1342–6.

Article  PubMed  Google Scholar 

Samuels A, Irie K, Mizuno T, Reifenberg J, Punt N, Vinks AA, et al. Integrating early response biomarkers in pharmacokinetic models: a novel method to individualize the initial infliximab dose in patients with Crohn’s disease. Clin Transl Sci. 2025;18(2): e70086.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schrapel C, Kovar L, Selzer D, Hofmann U, Tran F, Reinisch W, et al. External model performance evaluation of twelve infliximab population pharmacokinetic models in patients with inflammatory bowel disease. Pharmaceutics. 2021;13(9):1368.

Article  PubMed  PubMed Central  Google Scholar 

Dubinsky MC, Mendiolaza ML, Phan BL, Moran HR, Tse SS, Mould DR. Dashboard-driven accelerated infliximab induction dosing increases infliximab durability and reduces immunogenicity. Inflamm Bowel Dis. 2022;28(9):1375–85.

Article  PubMed  Google Scholar 

Poweleit EA, Vinks AA, Mizuno T. Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. Ther Drug Monit. 2023;45(2):143–50.

Article  PubMed  PubMed Central  Google Scholar 

Stankeviciute K, Woillard JB, Peck RW, Marquet P, van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin Pharmacokinet. 2023;62(11):1551–65.

Article  PubMed  Google Scholar 

Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, et al. Machine learning: a new approach for dose individualization. Clin Pharmacol Ther. 2024;115(4):727–44.

Article  PubMed  Google Scholar 

Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1150–60.

Article  CAS  Google Scholar 

Hughes JH, Tong DMH, Burns V, Daly B, Razavi P, Boelens JJ, et al. Clinical decision support for chemotherapy-induced neutropenia using a hybrid pharmacodynamic/machine learning model. CPT Pharmacomet Syst Pharmacol. 2023;12(11):1764–76.

Article  CAS  Google Scholar 

Chen K, Wang C, Wei Y, Ma S, Huang W, Dong Y, et al. Machine learning and population pharmacokinetics: a hybrid approach for optimizing vancomycin therapy in sepsis patients. Microbiol Spectr. 2025;31: e0049925.

Article  Google Scholar 

Destere A, Marquet P, Gandonniere CS, Asberg A, Loustaud-Ratti V, Carrier P, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with Iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–65.

Article  PubMed  CAS  Google Scholar 

Destere A, Marquet P, Labriffe M, Drici MD, Woillard JB. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.

Article  PubMed  CAS  Google Scholar 

Le Louedec F, Puisset F, Thomas F, Chatelut E, White-Koning M. Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open-source R package mapbayr. CPT Pharmacomet Syst Pharmacol. 2021;10(10):1208–20.

Article  Google Scholar 

Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco: Association for Computing Machinery; 2016. p. 785–94.

Kyle TB. mrgsolve: Simulate from ODE-Based Models. 2024.

Felicien. mapbayr: MAP-Bayesian Estimation of PK Parameters. 2023.

David M, Evgenia D, Kurt H, Andreas W, Friedrich L. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2024.

Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth ed. New York; 2002.

Andy L, Matthew W. Classification and Regression by randomForest; 2002.

Donagher J, Martin JH, Barras MA. Individualised medicine: why we need Bayesian dosing. Intern Med J. 2017;47(5):593–600.

Article  PubMed  Google Scholar 

Heikal OS, van Rheenen PF, Touw DJ, Kosterink JGW, Maurer M, Koomen JV, et al. Infliximab in paediatric inflammatory bowel disease: external evaluation of population pharmacokinetic models. Br J Clin Pharmacol. 2024;90(9):2200–14.

Article  PubMed  CAS  Google Scholar 

Tootooni MS, Barreto EF, Wutthisirisart P, Kashani KB, Pasupathy KS. Determining steady-state trough range in vancomycin drug dosing using machine learning. J Crit Care. 2024;82: 154784.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jian C, Chen S, Wang Z, Zhou Y, Zhang Y, Li Z, et al. Predicting delayed methotrexate elimination in pediatric acute lymphoblastic leukemia patients: an innovative web-based machine learning tool developed through a multicenter, retrospective analysis. BMC Med Inform Decis Mak. 2023;23(1):148.

Article  PubMed  PubMed Central  Google Scholar 

Kang CY, Yoon JH. Current challenges in adopting machine learning to critical care and emergency medicine. Clin Exp Emerg Med. 2023;10(2):132–7.

Article  PubMed  PubMed Central  Google Scholar 

Ganatra HA. Machine learning in pediatric healthcare: current trends, challenges, and future directions. J Clin Med. 2025;14(3):807.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maier C, de Wiljes J, Hartung N, Kloft C, Huisinga W. A continued learning approach for model-informed precision dosing: updating models in clinical practice. CPT Pharmacomet Syst Pharmacol. 2022;11(2):185–98.

Article  CAS  Google Scholar 

Comments (0)

No login
gif