Sharma R. Wingless, a new mutant in Drosophila melanogaster. Drosoph Inf Serv. 1973;50:134.
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5745):795–801. https://doi.org/10.1038/287795a0.
Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99–109. https://doi.org/10.1016/0092-8674(82)90409-3.
Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988;55(4):619–25. https://doi.org/10.1016/0092-8674(88)90220-6.
Nusse R, van Ooyen A, Cox D, Fung YK, Varmus HE. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature. 1984;307(5906):131–6. https://doi.org/10.1038/307131a0.
Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987;50(4):649–57. https://doi.org/10.1016/0092-8674(87)90038-9.
McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989;58(6):1075–84. https://doi.org/10.1016/0092-8674(89)90506-0.
Zhan T, Rindtorff N, Boutros M. Wntsignaling in cancer. Oncogene. 2017;36(10):1461–73. https://doi.org/10.1038/onc.2016.304.
Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253(4980):661–5. https://doi.org/10.1126/science.1651562.
Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253(4980):665–9. https://doi.org/10.1126/science.1651563.
Eshghifar N, Farrokhi N, Naji T, Zali M. Tumor suppressor genes in familial adenomatous polyposis. Gastroenterol Hepatol Bed Bench. 2017;10(1):3–13.
PubMed PubMed Central Google Scholar
Bryja V, Červenka I, Čajánek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol. 2017;52:614–37. https://doi.org/10.1080/10409238.2017.1350135.
CAS PubMed PubMed Central Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.
CAS PubMed PubMed Central Google Scholar
Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6. https://doi.org/10.1038/nature08658.
Clements WM, Wang J, Sarnaik A, et al. β-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 2002;62:3503–6.
Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24:245–50. https://doi.org/10.1038/73448.
Dahmen RP, Koch A, Denkhaus D, et al. Deletions of AXIN1, a component of the WNT/Wingless pathway, in sporadic medulloblastomas. Cancer Res. 2001;61:7039–43.
Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 2006;25:7531–7. https://doi.org/10.1038/sj.onc.1210059.
Miete C, Solis GP, Koval A, et al. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth, Nat Commun. 2022;13:674. Published February 3, 2022. https://doi.org/10.1038/s41467-022-28286-9.
Parichha A, Suresh V, Chatterjee M, et al. Constitutive activation of canonical Wntsignaling disrupts choroid plexus epithelial fate, Nat Commun. 2022;13:633. Published February 2, 2022. https://doi.org/10.1038/s41467-021-27602-z.
Neitzel LR, Spencer ZT, Nayak A, et al. Developmental regulation of Wntsignaling by Nagk and the UDP-GlcNAc salvage pathway. Mech Dev. 2019;156:20–31. https://doi.org/10.1016/j.mod.2019.03.002.
CAS PubMed PubMed Central Google Scholar
Sun S, Zhu XJ, Huang H, et al. WNT Signaling represses astrogliogenesis via Ngn2-dependent direct suppression of astrocyte gene expression. Glia. 2019;67:1333–43. https://doi.org/10.1002/glia.23608.
Neiheisel A, Kaur M, Ma N, Havard P, Shenoy AK. Wnt pathway modulators in cancer therapeutics: an update on completed and ongoing clinical trials. Int J Cancer. 2022;150:727–40. https://doi.org/10.1002/ijc.33811.
Zhao H, Ming T, Tang S, et al. Wntsignaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21:144. Published July 14, 2022. https://doi.org/10.1186/s12943-022-01616-7.
Creative Diagnostics, Wntsignaling pathway, Creative Diagnostics. http://www.creative-diagnostics.com/wnt-signaling-pathway.htm, 2025 (accessed January 27, 2025).
Zhong Z, Virshup DM. Wntsignaling and drug resistance in cancer. Mol Pharmacol. 2020;97:72–89. https://doi.org/10.1124/mol.119.117978.
Sun Y, Wang W, Zhao C. Frizzled receptors in tumors, focusing on signaling, roles, modulation mechanisms, and targeted therapies. Oncol Res. 2021;28:661–74. https://doi.org/10.3727/096504020X16014648664459.
PubMed PubMed Central Google Scholar
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. https://doi.org/10.1016/j.cell.2017.05.016.
Wu G, Huang H, Abreu JG, He X. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS ONE. 2008;4: e4926. https://doi.org/10.1371/journal.pone.0004926.
Qin K, Yu M, Fan J, et al. Canonical and noncanonical Wntsignaling: multilayered mediators, signaling mechanisms, and major signaling crosstalk, Genes Dis. 2023;11:103–34. Published March 24, 2023. https://doi.org/10.1016/j.gendis.2023.01.030.
Kim KA, Wagle M, Tran K, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19:2588–96. https://doi.org/10.1091/mbc.e08-02-0187.
CAS PubMed PubMed Central Google Scholar
Li S, Niu J, Smits R. RNF43 and ZNRF3: versatile regulators at the membrane and their role in cancer. BiochimBiophys Acta Rev Cancer. 2024;1879: 189217. https://doi.org/10.1016/j.bbcan.2024.189217.
Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell. 2004;119:97–108. https://doi.org/10.1016/j.cell.2004.09.019.
Vanhollebeke B, Stone OA, Bostaille N, et al. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. Elife. 2015;4:e06489. Published June 8, 2015. https://doi.org/10.7554/eLife.06489.
Wikipedia, GPR124, https://en.wikipedia.org/wiki/GPR124, 2024 (edited December 5, 2024; accessed January 28, 2025).
González-Sancho JM, Greer YE, Abrahams CL, et al. Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wntsignaling. J Biol Chem. 2013;288:9428–37. https://doi.org/10.1074/jbc.M112.448480.
CAS PubMed PubMed Central Google Scholar
Simons M, Gloy J, Bullerkotte A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wntsignaling pathways. Nat Genet. 1973;33:537–43.
Bernatik O, Paclikova P, Ganji RS, Bryja V. Activity of Smurf2 ubiquitin ligase is regulated by the Wnt pathway protein Dishevelled. Cells. 1990;9:1147. https://doi.org/10.3390/cells9051147.
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol. 2020;67:102–16. https://doi.org/10.1016/j.semcancer.2019.12.023.
Sato A, Khadka DK, Liu W, et al. Profilin is an effector for Daam1 in non-canonical Wntsignaling and is required for vertebrate gastrulation. Development. 1976;133:4219–31. https://doi.org/10.1242/dev.02590.
Comments (0)