Gold nanoparticles capped with inclusion complex for the delivery of Chrysin in triple-negative breast cancer

Salari N, et al. Anti-cancer activity of Chrysin in cancer therapy: a systematic review. Indian J Surg Oncol. 2022;13(4):681–90. https://doi.org/10.1007/s13193-022-01550-6.

Article  PubMed  PubMed Central  Google Scholar 

Alfarouk KO, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1):1–13. https://doi.org/10.1186/s12935-015-0221-1.

Article  Google Scholar 

Kim KM, Jung J. Upregulation of G protein-coupled estrogen receptor by chrysin-nanoparticles inhibits tumor proliferation and metastasis in triple negative breast cancer xenograft model. Front Endocrinol (Lausanne). 2020;11(September):1–11. https://doi.org/10.3389/fendo.2020.560605.

Article  Google Scholar 

Dhiman R, et al. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. Discov Nano. 2024. https://doi.org/10.1186/s11671-024-04086-6.

Article  PubMed  PubMed Central  Google Scholar 

Ullah S, Khalil AA, Shaukat F, Song Y. Sources, extraction and biomedical properties of polysaccharides Samee; 2019. p. 1–23.

Zaky AA, Akram MU, Rybak K, Witrowa-Rajchert D, Nowacka M. Bioactive compounds from plants and by-products: novel extraction methods, applications, and limitations. AIMS Mol Sci. 2024;11(2):150–88. https://doi.org/10.3934/molsci.2024010.

Article  Google Scholar 

Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci. 2021. https://doi.org/10.1186/s43094-020-00161-8.

Article  PubMed  PubMed Central  Google Scholar 

Ullah A, et al. Therapeutic agent. Molecules. 2020;6(11):1–39.

Google Scholar 

Baidya D, Kushwaha J, Mahadik K, Patil S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev Ind Pharm. 2019;45(5):852–60. https://doi.org/10.1080/03639045.2019.1576726.

Article  PubMed  Google Scholar 

Tang X, et al. Chrysin inhibits TAMs-mediated autophagy activation via CDK1/ULK1 pathway and reverses TAMs-mediated growth-promoting effects in non-small cell lung cancer. Pharmaceuticals. 2024. https://doi.org/10.3390/ph17040515.

Article  PubMed  PubMed Central  Google Scholar 

Elhoseny SM, Saleh NM, Meshali MM. Self-nanoemulsion intrigues the gold phytopharmaceutical chrysin. In vitro assessment and intrinsic analgesic effect. AAPS PharmSciTech. 2024;25(3):1–18. https://doi.org/10.1208/s12249-024-02767-0.

Article  Google Scholar 

Das S, Mohanty S, Maharana J, Jena SR, Nayak J, Subuddhi U. Microwave-assisted β-cyclodextrin/chrysin inclusion complexation: an economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro. J Mol Liq. 2020;310: 113257. https://doi.org/10.1016/j.molliq.2020.113257.

Article  Google Scholar 

Cheirsilp B, Rakmai J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol Eng Med. 2017;2(1):1–6. https://doi.org/10.15761/bem.1000108.

Article  Google Scholar 

Imam SS, et al. Formulation of multicomponent Chrysin-Hydroxy propyl β cyclodextrin-Poloxamer inclusion complex using spray dry method: physicochemical characterization to cell viability assessment. Pharmaceuticals. 2022. https://doi.org/10.3390/ph15121525.

Article  PubMed  PubMed Central  Google Scholar 

Nutho B, et al. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes. Beilstein J Org Chem. 2014;10:2789–99. https://doi.org/10.3762/bjoc.10.296.

Article  PubMed  PubMed Central  Google Scholar 

Fenyvesi F, et al. Cyclodextrin complexation improves the solubility and Caco-2 permeability of chrysin. Materials (Basel). 2020;13(16):1–12. https://doi.org/10.3390/MA13163618.

Article  Google Scholar 

Jasim AJ, et al. Preliminary trials of the gold nanoparticles conjugated chrysin: an assessment of anti-oxidant, anti-microbial, and in vitro cytotoxic activities of a nanoformulated flavonoid. Nanotechnol Rev. 2022;11(1):2726–41. https://doi.org/10.1515/ntrev-2022-0153.

Article  Google Scholar 

de Oliveira LC, et al. In silico study, physicochemical and in vitro lipase inhibitory activity of α,β-amyrenone inclusion complexes with cyclodextrins. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22189882.

Article  PubMed  PubMed Central  Google Scholar 

Butt SS, Badshah Y, Shabbir M, Rafiq M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinforma Biotechnol. 2020;1(1):1–25. https://doi.org/10.2196/14232.

Article  Google Scholar 

P. S. K, D. T. V, M. Pharmacy, and M. Pharm. Overview on: Cyclodextrn inclusion complex. J Emerg Technol Innov Res. 2023;10(07):356–62.

Google Scholar 

Li Y, He ZD, Zheng QE, Hu C, Lai WF. Hydroxypropyl-β-cyclodextrin for delivery of baicalin via inclusion complexation by supercritical fluid encapsulation. Molecules. 2018;23(5):1–15. https://doi.org/10.3390/molecules23051169.

Article  Google Scholar 

Velhal K, et al. Β-Cyclodextrin inclusion complex as a potent delivery system for enhanced cytotoxicity of Paclitaxel in Triple-Negative Breast Cancer Cells. J Nanopart Res. 2025. https://doi.org/10.1007/s11051-025-06229-x.

Article  Google Scholar 

Lakkakula JR, Krause RWM, Divakaran D, Barage S, Srivastava R. 5-Fu inclusion complex capped gold nanoparticles for breast cancer therapy. J Mol Liq. 2021;341: 117262. https://doi.org/10.1016/j.molliq.2021.117262.

Article  Google Scholar 

Mohandoss S, Stalin T. Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones. Photochem Photobiol Sci. 2017;16(4):476–88. https://doi.org/10.1039/c6pp00285d.

Article  PubMed  Google Scholar 

López-Tobar E, Blanch GP, Ruiz Del Castillo ML, Sanchez-Cortes S. Encapsulation and isomerization of curcumin with cyclodextrins characterized by electronic and vibrational spectroscopy. Vib Spectrosc. 2012;62(2012):292–8. https://doi.org/10.1016/j.vibspec.2012.06.008.

Article  Google Scholar 

Ngumbi PK, Mugo SW, Ngaruiya JM. Determination of gold nanoparticles sizes via surface Plasmon resonance. IOSR J Appl Chem (IOSR-JAC). 2018;11(7):25–9. https://doi.org/10.9790/5736-1107012529.

Article  Google Scholar 

Sierpe R, et al. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release. ACS Appl Mater Interfaces. 2015;7(28):15177–81. https://doi.org/10.1021/acsami.5b00186.

Article  PubMed  Google Scholar 

Sci F. Department of food and nutrition, Kyungnam University, Gyeongnam 51767, Korea. Prev Nutr Food Sci. 2020;25(4):440–8.

Google Scholar 

Zhao R, Sandström C, Zhang H, Tan T. NMR study on the inclusion complexes of β-cyclodextrin with isoflavones. Molecules. 2016;21(4):1–11. https://doi.org/10.3390/molecules21040372.

Article  Google Scholar 

Sharma A, et al. Exploring the inclusion complex of an anticancer drug with β-cyclodextrin for reducing cytotoxicity toward the normal human cell line by an experimental and computational approach. ACS Omega. 2023;8(32):29388–400. https://doi.org/10.1021/acsomega.3c02783.

Article  PubMed  PubMed Central  Google Scholar 

Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020;15(1):819–39. https://doi.org/10.1515/biol-2020-0094.

Article  PubMed  PubMed Central  Google Scholar 

Joel A. Pedersen Isabel U. Foreman-Ortiz,† Ting Fung Ma,‡ Brandon M. Hoove Meng Wu,⟂ Catherine J. Murphy, Regina M. Murphy and †, Version of Record: https://www.sciencedirect.com/science/article/pii/S1773224724000935, sciencedirect; 2024, 1(2024), 1–29.

Collins SP, et al. No title 済無no title no title no title. IJSRST. 2021;8(5):1–574.

Google Scholar 

Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold nanoparticles: multifunctional properties, synthesis, and future prospects. Nanomaterials. 2024;14(22):1–56. https://doi.org/10.3390/nano14221805.

Article  Google Scholar 

Surapaneni SK, Bashir S, Tikoo K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci Rep. 2018;8(1):1–12. https://doi.org/10.1038/s41598-018-30541-3.

Article  Google Scholar 

Hong TB, Rahumatullah A, Yogarajah T, Ahmad M, Yin KB. Potential effects of chrysin on MDA-MB-231 cells. Int J Mol Sci. 2010;11(3):1057–69. https://doi.org/10.3390/ijms11031057.

Article  PubMed  PubMed Central  Google Scholar 

Çetinkaya S. Chrysin mediates the induction of apoptosis in breast cancer cells via the inhibition of the WNT/β-catenin signaling pathway; 2023. https://doi.org/10.20944/preprints202310.0736.v1.

Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA. 1979;76(9):4498–502. https://doi.org/10.1073/pnas.76.9.4498.

Article  PubMed 

Comments (0)

No login
gif