Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Mehrotra R, Yadav K. Breast cancer in India: present scenario and the challenges ahead. World J Clin Oncol. 2022;13:209.
PubMed PubMed Central Google Scholar
Rezaei Harandi Z, Heidari R, Reiisi S. Co-delivery of silymarin and metformin dual-loaded in mesoporous silica nanoparticles synergistically sensitizes breast cancer cell line to mitoxantrone chemotherapy. IEEE Trans Nanobioscience. 2023;22:872–80.
Hosseini SS, Ebrahimi SO, Haji Ghasem Kashani M, Reiisi S. Study of quercetin and fisetin synergistic effect on breast cancer and potentially involved signaling pathways. Cell Biol Int. 2023;47:98–109.
Wang C, Hao X, Zhang R. Targeting cellular senescence to combat cancer and ageing. Mol Oncol. 2022;16:3319–32.
PubMed PubMed Central Google Scholar
Schmitt CA, Wang B, Demaria M. Senescence and cancer — role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19:619–36.
PubMed PubMed Central Google Scholar
Pare R, Yang T, Shin JS, Lee CS. The significance of the senescence pathway in breast cancer progression. J Clin Pathol. 2013;66:491–5.
Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat. 2012;15:123.
PubMed PubMed Central Google Scholar
de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E, Muñoz-Espín D. Targeting senescence as a therapeutic opportunity for triple-negative breast cancer. Mol Cancer Ther. 2023;22:583–98.
PubMed PubMed Central Google Scholar
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19:619–36.
PubMed PubMed Central Google Scholar
Milczarek M. The premature senescence in breast cancer treatment strategy. Cancers (Basel). 2020;12:1–22.
Sirinian C, Peroukidis S, Kriegsmann K, Chaniotis D, Koutras A, Kriegsmann M, et al. Cellular senescence in normal mammary gland and breast cancer. Implications for cancer therapy. Genes (Basel). 2022;13: 994.
Xue C, Chen Y, Hu D-N, Iacob C, Lu C. Chrysin induces cell apoptosis in human uveal melanoma cells via intrinsic apoptosis. Oncol Lett. 2016. https://doi.org/10.3892/ol.2016.5251.
PubMed PubMed Central Google Scholar
Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X, et al. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett. 2018;15:9117–25.
PubMed PubMed Central Google Scholar
Han H, Lee SO, Xu Y, Kim JE, Lee HJ. Sphk/HIF-1α signaling pathway has a critical role in chrysin-induced anticancer activity in hypoxia-induced PC-3 cells. Cells. 2022;11:2787.
PubMed PubMed Central Google Scholar
Mani R, Natesan V. Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018;145:187–96.
Perrott KM, Wiley CD, Desprez PY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience. 2017;39:161–73.
PubMed PubMed Central Google Scholar
Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-Cook CK, Gewirtz DA, et al. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem. 2002;277:35509–15.
Fernandes SG, Gala K, Khattar E. Telomerase inhibitor MST-312 and quercetin synergistically inhibit cancer cell proliferation by promoting DNA damage. Transl Oncol. 2023;27: 101569.
Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973–9.
PubMed PubMed Central Google Scholar
Perrott KM, Wiley CD, Desprez PY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience. 2017;39:161–73. https://doi.org/10.1007/s11357-017-9970-1.
PubMed PubMed Central Google Scholar
Sun X, Huo X, Luo T, Li M, Yin Y, Jiang Y. The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J Cell Mol Med. 2011;15:2389–98.
PubMed PubMed Central Google Scholar
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther. 2022;230: 107943.
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, et al. Doxorubicin—an agent with multiple mechanisms of anticancer activity. Cells. 2023;12:659.
PubMed PubMed Central Google Scholar
Billimoria R, Bhatt P. Senescence in cancer: advances in detection and treatment modalities. Biochem Pharmacol. 2023;215: 115739.
Nishio K, Inoue A. Senescence-associated alterations of cytoskeleton: Extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochem Cell Biol. 2005;123:263–73. https://doi.org/10.1007/s00418-005-0766-5.
Ramos PS, Ferreira C, Passos CLA, Silva JL, Fialho E. Effect of quercetin and chrysin and its association on viability and cell cycle progression in MDA-MB-231 and MCF-7 human breast cancer cells. Biomed Pharmacother. 2024;179: 117276.
Srdic-Rajic T, Santibañez JF, Kanjer K, Tisma-Miletic N, Cavic M, Galun D, et al. Iscador qu inhibits doxorubicin-induced senescence of MCF7 cells. Sci Rep. 2017;7:1–12.
Low dose dinaciclib enhances doxorubicin-induced senescence in myeloma RPMI8226 cells by transformation of the p21 and p16 pathways [Internet]. [cited 2025 Jul 31].
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–4.
PubMed PubMed Central Google Scholar
Glück S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19:1061–70.
PubMed PubMed Central Google Scholar
Wu Y, Wei Q, Yu J. <p>The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration</p>. Clin Interv Aging. 2019;14:1277–83.
PubMed PubMed Central Google Scholar
Milczarek M. The premature senescence in breast cancer treatment strategy. Cancers (Basel). 2020;12:1815.
PubMed PubMed Central Google Scholar
Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.
PubMed PubMed Central Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Hanahan D. Hallmarks of cancer: new dimensionshallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.
Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19:439–53.
Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106:17031–6.
PubMed PubMed Central Google Scholar
Ortiz-Montero P, Londoño-Vallejo A, Vernot JP. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal. 2017;15:17.
PubMed PubMed Central Google Scholar
Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, et al. 2015 Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med [Internet]. [cited 2025 Jan 19];7.
Sun Y, Coppé JP, Lam EWF. Cellular senescence: the sought or the unwanted? Trends Mol Med. 2018;24:871–85.
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 2023;290(5):1362–83. https://doi.org/10.1111/febs.16350.
Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013;27:1787–99.
Comments (0)