Circ_0000847 promotes the migration, invasion, and EMT process in colorectal cancer through binding to IGF2BP2 to enhance IGF2 mRNA stability

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin. 2021;71(3):209–49.

PubMed  Google Scholar 

Sharma R, Abbasi-Kangevari M, Abd-Rabu R, Abidi H, Abu-Gharbieh E, Acuna JM, Adhikari S, Advani SM, Afzal MS, Meybodi MA, Ahinkorah B. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol. 2022;7(7):627–47.

CAS  Google Scholar 

Benson AB, Venook AP, Al-Hawary MM, et al. Colon Cancer, Version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(3):329–59.

PubMed  Google Scholar 

Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22(2):1706–28.

CAS  PubMed  Google Scholar 

Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172.

CAS  PubMed  PubMed Central  Google Scholar 

Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90.

CAS  PubMed  Google Scholar 

Li S, Wang J, Ren G. CircRNA: an emerging star in plant research: a review. Int J Biol Macromol. 2024;272(Pt 2): 132800.

CAS  PubMed  Google Scholar 

Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–91.

CAS  PubMed  PubMed Central  Google Scholar 

Long F, Lin Z, Li L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 2021;20(1):26.

CAS  PubMed  PubMed Central  Google Scholar 

Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–17.

CAS  PubMed  PubMed Central  Google Scholar 

Yang B, Wang YW, Zhang K. Interactions between circRNA and protein in breast cancer. Gene. 2024;895: 148019.

CAS  PubMed  Google Scholar 

Bell JL, Wachter K, Muhleck B, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70(15):2657–75.

CAS  PubMed  Google Scholar 

Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18(1):174.

CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Mu Q, Huang H, et al. The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int. 2018;2018:4217215–59.

Google Scholar 

Pan X, Huang B, Ma Q, et al. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA[J]. Clin Transl Med. 2022;12(7): e994.

CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Xu R, Zhu X, et al. m6A-modified circABCC4 promotes stemness and metastasis of prostate cancer by recruiting IGF2BP2 to increase stability of CCAR1[J]. Cancer Gene Ther. 2023;30(10):1426–40.

CAS  PubMed  Google Scholar 

Zhong S, Wang J, Zhang Q, et al. CircPrimer: a software for annotating circRNAs and determining the specificity of circRNA primers[J]. BMC Bioinform. 2018;19(1):292.

Google Scholar 

Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) signaling in colorectal cancer-from basic research to potential clinical applications. Int J Mol Sci. 2019;20(19):4915.

CAS  PubMed  PubMed Central  Google Scholar 

Hao Q, Zhang M, Wu Y, et al. Hsa_circRNA_001676 accelerates the proliferation, migration and stemness in colorectal cancer through regulating miR-556-3p/G3BP2 axis. Sci Rep. 2023;13(1):18353.

CAS  PubMed  PubMed Central  Google Scholar 

Long F, Li L, Xie C, et al. Intergenic CircRNA Circ_0007379 inhibits colorectal cancer progression by modulating miR-320a biogenesis in a KSRP-dependent manner. Int J Biol Sci. 2023;19(12):3781–803.

CAS  PubMed  PubMed Central  Google Scholar 

Lin J, Lian X, Xue S, et al. HBV promotes the proliferation of liver cancer cells through the hsa_circ_0000847/miR-135a pathway. Evid Based Compl Alternat Med. 2022;2022:7332337.

Google Scholar 

Zhang W, Wu G, Sun P, et al. circ_SMAD2 regulate colorectal cancer cells proliferation through targeting miR-1258/RPN2 signaling pathway[J]. J Cancer. 2021;12(6):1678–86.

CAS  PubMed  PubMed Central  Google Scholar 

Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol. 2014;32(5):453–61.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-beta signaling during cancer progression[J]. Semin Cancer Biol. 2024;101:1–11.

CAS  PubMed  PubMed Central  Google Scholar 

Ang HL, Mohan CD, Shanmugam MK, et al. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds[J]. Med Res Rev. 2023;43(4):1141–200.

CAS  PubMed  Google Scholar 

Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020;98(1):87–97.

CAS  PubMed  Google Scholar 

Jiang X, Guo S, Wang S, et al. EIF4A3-Induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 2022;82(5):831–45.

CAS  PubMed  Google Scholar 

Yao B, Zhang Q, Yang Z, et al. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m(6)A-modified CREB1 mRNA[J]. Mol Cancer. 2022;21(1):140.

CAS  PubMed  PubMed Central  Google Scholar 

Burns JL, Hassan AB. Cell survival and proliferation are modified by insulin-like growth factor 2 between days 9 and 10 of mouse gestation[J]. Development (Cambridge). 2001;128(19):3819–30.

CAS  Google Scholar 

Baker J, Liu J, Robertson EJ, et al. Role of insulin-like growth factors in embryonic and postnatal growth[J]. Cell. 1993;75(1):73–82.

CAS  PubMed  Google Scholar 

Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20(6):R321–39.

CAS  PubMed  Google Scholar 

Unger C, Kramer N, Unterleuthner D, et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene. 2017;36(38):5341–55.

CAS  PubMed  Google Scholar 

Afshar S, Najafi R, Sedighi PA, et al. MiR-185 enhances radiosensitivity of colorectal cancer cells by targeting IGF1R and IGF2. Biomed Pharmacother. 2018;106:763–9.

CAS  PubMed  Google Scholar 

Rogers MA, Kalter V, Strowitzki M, et al. IGF2 knockdown in two colorectal cancer cell lines decreases survival, adhesion and modulates survival-associated genes. Tumour Biol. 2016;37(9):12485–95.

CAS  PubMed  Google Scholar 

Ewing GP, Goff LW. The insulin-like growth factor signaling pathway as a target for treatment of colorectal carcinoma. Clin Colorectal Cancer. 2010;9(4):219–23.

PubMed  Google Scholar 

Comments (0)

No login
gif