Female and male hormonal-dependent malignancies: the role of long non-coding RNAs

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.

Article  PubMed  Google Scholar 

Colditz A, Bohlke K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin. 2014;64(3):186–94. https://doi.org/10.3322/caac.21225.

Article  PubMed  Google Scholar 

Liu X, Lin L, Cai Q, et al. Do testosterone and sex hormone-binding globulin affect cancer risk? A Mendelian randomization and bioinformatics study. Aging Male. 2023;26(1): 2261524. https://doi.org/10.1080/13685538.2023.2261524.

Article  CAS  PubMed  Google Scholar 

Li H, Liu Z, Wu N, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19(1):107. https://doi.org/10.1186/s12943-020-01227-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skourti E, Dhillon P. Cancer epigenetics: promises and pitfalls for cancertherapy. FEBS J. 2022;289(5):1156–9. https://doi.org/10.1111/febs.16395.

Article  CAS  PubMed  Google Scholar 

Rugo H, Rumble R, Macrae E, et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American society of clinical oncology guideline. J Clin Oncol. 2016;34(25):3069–103. https://doi.org/10.1200/JCO.2016.67.1487.

Article  CAS  PubMed  Google Scholar 

Thakur N, Singh P, Bagri A, et al. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. Explor Target Anti-tumor Ther. 2024;5:1110–34. https://doi.org/10.37349/etat.2024.00266.

Article  CAS  Google Scholar 

Statello L, Guo C, Chen L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9.

Article  CAS  PubMed  Google Scholar 

Kashyap D, Sharma R, Goel N, et al. Coding roles of long non coding RNAs in breast cancer: emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet. 2023;13: 993687. https://doi.org/10.3389/fgene.2022.993687.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel L, Miller D, Fuchs E, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

Article  PubMed  Google Scholar 

Ibrahim S, Khaled M, Mikhail N, et al. Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014. https://doi.org/10.1155/2014/437971.

Article  PubMed  PubMed Central  Google Scholar 

Malone R, Oliva M, Sabatini J, et al. Molecular profiling for precision cancer therapies. Genome med. 2020;12:1–19. https://doi.org/10.1186/s13073-019-0703-1.

Article  Google Scholar 

Cava C, Armaos A, Lang B, et al. Identification of long non-coding RNAs and RNA binding proteins in breast cancer subtypes. Sci Rep. 2022;12(1):1–13. https://doi.org/10.1038/s41598-021-04664-z.

Article  CAS  Google Scholar 

Sorlie T, Perou M, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74. https://doi.org/10.1073/pnas.191367098.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Q, Li Y, Li S, et al. LncRNA DILA1 inhibits cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun. 2020;11(1):5513. https://doi.org/10.1038/s41467-020-19349-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2020;39(5):953–74. https://doi.org/10.1038/s41388-019-1040-y.

Article  CAS  PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

Article  PubMed  Google Scholar 

Ghiam F, Vesprini D, Liu K. Long noncoding RNAs: new frontiers for advancing personalized cancer medicine in prostate cancer. Transl Androl Urol. 2017;6:326–30. https://doi.org/10.21037/tau.2017.03.06.

Article  PubMed  PubMed Central  Google Scholar 

Silva JM, Boczek NJ, Berres MW. Lsinct5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol. 2011;8(3):496–505. https://doi.org/10.4161/rna.8.3.14800.

Article  CAS  PubMed  Google Scholar 

Liu S, Chen W, Hu H, et al. Long noncoding RNA PVT1 promotes breast cancer proliferation and metastasis by binding miR-128-3p and UPF1. Breast Cancer Res. 2021;23(1):115. https://doi.org/10.1186/s13058-021-01491-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melone V, Salvati A, Brusco N, et al. Functional relationships between long non-coding RNAs and estrogen receptor alpha: a new frontier in hormone-responsive breast cancer management. Int J Mol Sci. 2023;24(2): 1145. https://doi.org/10.3390/ijms24021145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salameh A, Lee AK, Cardo-Vila M, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A. 2015;112:8403–8. https://doi.org/10.1073/pnas.1507882112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;12:507. https://doi.org/10.1186/1471-2407-12-507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Liu Y, Zhuang C, et al. Inducing cell growth arrest and apoptosis by silencing long non-coding RNA PCAT-1 in human bladder cancer. Tumour Biol. 2015;36:7685–9. https://doi.org/10.1007/s13277-015-3490-3.

Article  CAS  PubMed  Google Scholar 

Prensner R, Iyer K, Balbin A, et al. Sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29:742–9. https://doi.org/10.1038/nbt.1914.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Q, Chu H, Ge Y, et al. LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J Cancer. 2018;9:1414–20. https://doi.org/10.7150/jca.23685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Dong X, Ji T, et al. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res. 2017;9:366–75.

CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Gao F, He Q, et al. LncRNA UCA1 functions as a ceRNA to promote prostate cancer progression via sponging miR143. Mol Ther. 2020;19:751–8. https://doi.org/10.1016/j.omtn.2019.11.021.

Article  CAS  Google Scholar 

Prensner R, Iyer K, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013;45:1392–8.

Comments (0)

No login
gif