Item does not exist

A novel long non-coding RNA, PICSAR, promotes thyroid cancer progression through the hsa-miR-320A/hsa-miR-485/RAPGEFL1 axis

Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125–37.

CAS  PubMed  Google Scholar 

Nguyen QT, et al. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30.

PubMed  PubMed Central  Google Scholar 

Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

CAS  PubMed  Google Scholar 

Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer. Front Endocrinol. 2020;11:82.

Google Scholar 

Habchi Y, et al. AI in thyroid cancer diagnosis: techniques, trends, and future directions. Systems. 2023. https://doi.org/10.3390/systems11100519.

Article  Google Scholar 

Grimm D. Recent advances in thyroid cancer research. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23094631.

Article  PubMed  PubMed Central  Google Scholar 

Silva SN. Special issue: genetic perspectives in thyroid cancer. Genes. 2021;12(2): 126.

CAS  PubMed  PubMed Central  Google Scholar 

Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.

CAS  PubMed  PubMed Central  Google Scholar 

Li N, et al. Zebrafish modeling mimics developmental phenotype of patients with RAPGEF1 mutation. Clin Genet. 2020;100:144–55.

Google Scholar 

Samuelsson JK, et al. Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer. Int J Oncol. 2011;38(6):1575–7.

CAS  PubMed  Google Scholar 

Verma A, et al. Development and tissue specific expression of RAPGEF1 (C3G) transcripts having exons encoding disordered segments with predicted regulatory function. Mol Biol Rep. 2024. https://doi.org/10.1007/s11033-024-09845-3.

Article  PubMed  Google Scholar 

Zhang Q, et al. Hsa_circ_0023990 promotes tumor growth and glycolysis in dedifferentiated TC via targeting miR-485-5p/FOXM1 axis. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqab172.

Article  PubMed  PubMed Central  Google Scholar 

Chen Q, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 2020. https://doi.org/10.1016/j.canlet.2019.10.017.

Article  PubMed  PubMed Central  Google Scholar 

Kang Y, et al. Construction and analyses of the microRNA-target gene differential regulatory network in thyroid carcinoma. PLoS ONE. 2017;12: e0178331.

PubMed  PubMed Central  Google Scholar 

Liu Y, et al. Molecular mechanisms of thyroid cancer: a competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother. 2022;146: 112251.

CAS  PubMed  Google Scholar 

Yang Q, et al. Analysis of LncRNA expression in cell differentiation. RNA Biol. 2018;15(3):413–22.

PubMed  PubMed Central  Google Scholar 

Javed Z, et al. LncRNAs as potential therapeutic targets in thyroid cancer. Asian Pac J Cancer Prev. 2020;21(2):281–7.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, et al. Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR-129-5p/KLK7 expression. J Cell Physiol. 2018;233(10):6638–48.

CAS  PubMed  Google Scholar 

Ghafouri-Fard S, Mohammad-Rahimi H, Taheri M. The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp Mol Pathol. 2020;112: 104332.

CAS  PubMed  Google Scholar 

Fan M, et al. A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med. 2013;5(4):1143–6.

PubMed  PubMed Central  Google Scholar 

Lu Y, et al. The overexpression of long intergenic ncRNA00162 induced by RelA/p65 promotes growth of pancreatic ductal adenocarcinoma. Cell Prolif. 2020;53(5): e12805.

CAS  PubMed  PubMed Central  Google Scholar 

Bannon MJ, et al. Identification of long noncoding RNA s dysregulated in the midbrain of human cocaine abusers. J Neurochem. 2015;135(1):50–9.

CAS  PubMed  PubMed Central  Google Scholar 

Bi X, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine. 2019;50:408–20.

CAS  PubMed  PubMed Central  Google Scholar 

Zong L, et al. LINC00162 confers sensitivity to 5-Aza-2′-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 2019;38(26):5281–93.

CAS  PubMed  Google Scholar 

Piipponen M, et al. Long noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136(8):1701–10.

CAS  PubMed  Google Scholar 

Colaprico A, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2015;44(8):e71–e71.

PubMed  PubMed Central  Google Scholar 

Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.

PubMed  PubMed Central  Google Scholar 

Chandrashekar DS, et al. Ualcan: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

CAS  PubMed  PubMed Central  Google Scholar 

Chandrashekar DS, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.

CAS  PubMed  PubMed Central  Google Scholar 

Wang P, et al. LncACTdb 3.0: an updated database of experimentally supported ceRNA interactions and personalized networks contributing to precision medicine. Nucleic Acids Res. 2022;50(D1):D183–9.

CAS  PubMed  Google Scholar 

Wang P, et al. Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res. 2015;43(7):3478–89.

CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-d131.

CAS  PubMed  Google Scholar 

Lü M, et al. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis. 2015;6(11): e1960.

PubMed  PubMed Central  Google Scholar 

Xu S, Dong W, Shi Y. LncRNA PICSAR binds to miR-485-5p and activates TGF-β1/Smad to promote abnormal proliferation of hypertrophic scar fibroblasts (HSFs) and excessive deposition of extracellular matrix (ECM). Med Mol Morphol. 2021;54(4):337–45.

CAS  PubMed  Google Scholar 

Lebastchi AH, Callender GG. Thyroid cancer. Curr Probl Cancer. 2014;38(2):48–74.

PubMed  Google Scholar 

Segev DL, Umbricht C, Zeiger MA. Molecular pathogenesis of thyroid cancer. Surg Oncol. 2003;12(2):69–90.

PubMed  Google Scholar 

Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, et al. Regulatory role of non-coding RNAs in 5-fluorouracil resistance in gastrointestinal cancers. Cancer Drug Resist. 2025;8:4.

CAS  PubMed  PubMed Central 

Comments (0)

No login
gif