Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125–37.
Nguyen QT, et al. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30.
PubMed PubMed Central Google Scholar
Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.
Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer. Front Endocrinol. 2020;11:82.
Habchi Y, et al. AI in thyroid cancer diagnosis: techniques, trends, and future directions. Systems. 2023. https://doi.org/10.3390/systems11100519.
Grimm D. Recent advances in thyroid cancer research. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23094631.
Article PubMed PubMed Central Google Scholar
Silva SN. Special issue: genetic perspectives in thyroid cancer. Genes. 2021;12(2): 126.
CAS PubMed PubMed Central Google Scholar
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.
CAS PubMed PubMed Central Google Scholar
Li N, et al. Zebrafish modeling mimics developmental phenotype of patients with RAPGEF1 mutation. Clin Genet. 2020;100:144–55.
Samuelsson JK, et al. Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer. Int J Oncol. 2011;38(6):1575–7.
Verma A, et al. Development and tissue specific expression of RAPGEF1 (C3G) transcripts having exons encoding disordered segments with predicted regulatory function. Mol Biol Rep. 2024. https://doi.org/10.1007/s11033-024-09845-3.
Zhang Q, et al. Hsa_circ_0023990 promotes tumor growth and glycolysis in dedifferentiated TC via targeting miR-485-5p/FOXM1 axis. Endocrinology. 2021. https://doi.org/10.1210/endocr/bqab172.
Article PubMed PubMed Central Google Scholar
Chen Q, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 2020. https://doi.org/10.1016/j.canlet.2019.10.017.
Article PubMed PubMed Central Google Scholar
Kang Y, et al. Construction and analyses of the microRNA-target gene differential regulatory network in thyroid carcinoma. PLoS ONE. 2017;12: e0178331.
PubMed PubMed Central Google Scholar
Liu Y, et al. Molecular mechanisms of thyroid cancer: a competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother. 2022;146: 112251.
Yang Q, et al. Analysis of LncRNA expression in cell differentiation. RNA Biol. 2018;15(3):413–22.
PubMed PubMed Central Google Scholar
Javed Z, et al. LncRNAs as potential therapeutic targets in thyroid cancer. Asian Pac J Cancer Prev. 2020;21(2):281–7.
CAS PubMed PubMed Central Google Scholar
Zhang H, et al. Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR-129-5p/KLK7 expression. J Cell Physiol. 2018;233(10):6638–48.
Ghafouri-Fard S, Mohammad-Rahimi H, Taheri M. The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp Mol Pathol. 2020;112: 104332.
Fan M, et al. A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med. 2013;5(4):1143–6.
PubMed PubMed Central Google Scholar
Lu Y, et al. The overexpression of long intergenic ncRNA00162 induced by RelA/p65 promotes growth of pancreatic ductal adenocarcinoma. Cell Prolif. 2020;53(5): e12805.
CAS PubMed PubMed Central Google Scholar
Bannon MJ, et al. Identification of long noncoding RNA s dysregulated in the midbrain of human cocaine abusers. J Neurochem. 2015;135(1):50–9.
CAS PubMed PubMed Central Google Scholar
Bi X, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine. 2019;50:408–20.
CAS PubMed PubMed Central Google Scholar
Zong L, et al. LINC00162 confers sensitivity to 5-Aza-2′-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 2019;38(26):5281–93.
Piipponen M, et al. Long noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136(8):1701–10.
Colaprico A, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2015;44(8):e71–e71.
PubMed PubMed Central Google Scholar
Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
PubMed PubMed Central Google Scholar
Chandrashekar DS, et al. Ualcan: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.
CAS PubMed PubMed Central Google Scholar
Chandrashekar DS, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.
CAS PubMed PubMed Central Google Scholar
Wang P, et al. LncACTdb 3.0: an updated database of experimentally supported ceRNA interactions and personalized networks contributing to precision medicine. Nucleic Acids Res. 2022;50(D1):D183–9.
Wang P, et al. Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res. 2015;43(7):3478–89.
CAS PubMed PubMed Central Google Scholar
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-d131.
Lü M, et al. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis. 2015;6(11): e1960.
PubMed PubMed Central Google Scholar
Xu S, Dong W, Shi Y. LncRNA PICSAR binds to miR-485-5p and activates TGF-β1/Smad to promote abnormal proliferation of hypertrophic scar fibroblasts (HSFs) and excessive deposition of extracellular matrix (ECM). Med Mol Morphol. 2021;54(4):337–45.
Lebastchi AH, Callender GG. Thyroid cancer. Curr Probl Cancer. 2014;38(2):48–74.
Segev DL, Umbricht C, Zeiger MA. Molecular pathogenesis of thyroid cancer. Surg Oncol. 2003;12(2):69–90.
Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012;3:219.
CAS PubMed PubMed Central Google Scholar
Zhang H, et al. Regulatory role of non-coding RNAs in 5-fluorouracil resistance in gastrointestinal cancers. Cancer Drug Resist. 2025;8:4.
Comments (0)