Item does not exist

The landscape of cyclin-dependent kinase 4/6 inhibitors in solid malignancies: emphasis on immunotherapy combinatorial strategies

Qi J, Ouyang Z. Targeting CDK4/6 for anticancer therapy. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10030685.

Google Scholar 

Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24:1770–83.

Google Scholar 

Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res. 2014;16:207.

Google Scholar 

Rampioni Vinciguerra GL, Sonego M, et al. CDK4/6 inhibitors in combination therapies: better in company than alone: A mini review. Front Oncol. 2022;12: 891580.

Google Scholar 

Rugo HS, Kabos P, et al. Abemaciclib in combination with pembrolizumab for HR+, HER2- metastatic breast cancer: phase 1b study. NPJ Breast Cancer. 2022;8:118.

Google Scholar 

Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

Google Scholar 

Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.

Google Scholar 

Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer. 2023;1878(4): 188912.

Google Scholar 

Spring LM, Wander SA, Andre F, Moy B, Turner NC, Bardia A. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet. 2020;395(10226):817–27.

Google Scholar 

Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell. 2018;34(1):9–20.

Google Scholar 

George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol. 2021;12(11): 693104.

Google Scholar 

Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2016;14(5):979–90.

Google Scholar 

Bourdeau V, Ferbeyre G. CDK4-CDK6 inhibitors induce autophagy-mediated degradation of DNMT1 and facilitate the senescence antitumor response. Autophagy. 2016;12(10):1965–6.

Google Scholar 

Zhou Y, Jin X, Ma J, Ding D, Huang Z, Sheng H, Yan Y, Pan Y, Wei T, Wang L, Wu H, Huang H. HDAC5 loss impairs RB repression of pro-oncogenic genes and confers CDK4/6 inhibitor resistance in cancer. Cancer Res. 2021;81(6):1486–99.

Google Scholar 

Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, Ivanova E, Paweletz CP, Bowden M, Zhou CW, Herter-Sprie GS, Sorrentino JA, Bisi JE, Lizotte PH, Merlino AA, Quinn MM, Bufe LE, Yang A, Zhang Y, Zhang H, Gao P, Chen T, Cavanaugh ME, Rode AJ, Haines E, Roberts PJ, Strum JC, Richards WG, Lorch JH, Parangi S, Gunda V, Boland GM, Bueno R, Palakurthi S, Freeman GJ, Ritz J, Haining WN, Sharpless NE, Arthanari H, Shapiro GI, Barbie DA, Gray NS, Wong KK. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216–33.

Google Scholar 

Yu Q, Sicinska E, Geng Y, Ahnström M, Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stål O, Sicinski P. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9(1):23–32.

Google Scholar 

Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82(4):621–30.

Google Scholar 

Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J Clin Oncol. 2005;23(18):4215–24.

Google Scholar 

Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker MG, Truss M, Beato M, Sica V, Bresciani F, Weisz A. 17beta-estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene. 1996;12(11):2315–24.

Google Scholar 

Watts CK, Sweeney KJ, Warlters A, Musgrove EA, Sutherland RL. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1994;31(1):95–105.

Google Scholar 

Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.

Google Scholar 

Ali LR, Garrido-Castro AC, Lenehan PJ, Bollenrucher N, Stump CT, Dougan M, Goel S, Shapiro GI, Tolaney SM, Dougan SK. PD-1 blockade and CDK4/6 inhibition augment nonoverlapping features of T cell activation in cancer. J Exp Med. 2023;220(4): e20220729.

Google Scholar 

Watanabe K, Niikura N, Kikawa Y, Oba M, Kobayashi K, Tada H, Ozaki S, Toh U, Yamamoto Y, Tsuneizumi M, Okuno T, Iwakuma N, Takeshita T, Iwamoto T, Ishiguro H, Masuda N, Saji S. Fulvestrant plus palbociclib in advanced or metastatic hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer after fulvestrant monotherapy: Japan Breast Cancer Research Group-M07 (FUTURE trial). Breast Cancer Res Treat. 2023;199(2):253–63.

Google Scholar 

Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Diéras V, Slamon DJ. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.

Google Scholar 

Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F, Winer EP, Janni W, Verma S, Conte P, Arteaga CL, Cameron DA, Petrakova K, Hart LL, Villanueva C, Chan A, Jakobsen E, Nusch A, Burdaeva O, Grischke EM, Alba E, Wist E, Marschner N, Favret AM, Yardley D, Bachelot T, Tseng LM, Blau S, Xuan F, Souami F, Miller M, Germa C, Hirawat S, O’Shaughnessy J. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.

Google Scholar 

Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, Koh H, Grischke EM, Frenzel M, Lin Y, Barriga S, Smith IC, Bourayou N, Llombart-Cussac A. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.

Google Scholar 

Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, Koh H, Grischke EM, Conte P, Lu Y, Barriga S, Hurt K, Frenzel M, Johnston S, Llombart-Cussac A. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol. 2020;6(1):116–24.

Google Scholar 

Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 2013;31(7):860–7.

Google Scholar 

Swoboda A, Nanda R. Immune checkpoint blockade for breast cancer. Cancer Treat Res. 2018;173:155–65.

Google Scholar 

Rugo HS, Kabos P, Beck JT, Jerusalem G, Wildiers H, Sevillano E, Paz-Ares L, Chisamore MJ, Chapman SC, Hossain MA, Chen Y, Tolaney SM. Abemaciclib in combination with pembrolizumab for HR+, HER2- metastatic breast cancer: phase 1b study. NPJ Breast Cancer. 2022;8(1): 118.

Google Scholar 

Masuda J, Tsurutani J, Masuda N, Tanabe Y, Iwasa T, Takahashi M, Futamura M, Matsumoto K, Aogi K, Iwata H, Hosonaga M, Mukohara T, Yoshimura K, Takano T. Abstract PS12–10: Phase II study of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR+, HER2- metastatic breast cancer: WJOG11418B NEWFLAME trial. Cancer Res. 2021;81(4):PS12–PS10.

Google Scholar 

Mayer EL, Ren Y, Wagle N, Mahtani R, Ma C, DeMichele A, Cristofanilli M, Meisel J, Miller KD, Abdou Y, Riley EC, Qamar R, Sharma P, Reid S, Sinclair N, Faggen M, Block CC, Ko N, Partridge AH, Chen WY, DeMeo M, Attaya V, Okpoebo A, Alberti J, Liu Y, Gauthier E, Burstein HJ, Regan MM, Tolaney SM. PACE: A randomized phase II study of fulvestrant, palbociclib, and avelumab after progression on cyclin-dependent kinase 4/6 inhibitor and aromatase inhibitor for hormone receptor–positive/human epidermal growth factor receptor–negative metastatic breast cancer. J Clin Oncol. 2024;42(17):2050–60.

Google Scholar 

Mayer E, Ren Y, Wagle N, Mahtani R, Ma C, DeMichele A, Cristofanilli M, Meisel J, Miller K, Jolly T, Riley E, Qamar R, Sharma P, Reid S, Sinclair N, Faggen M, Block C, Ko N, Partridge A, Tolaney S. Abstract GS3–06: GS3–06 palbociclib After CDK4/6i and endocrine therapy (PACE): a randomized phase II study of fulvestrant, palbociclib, and avelumab for endocrine pre-treated ER+/HER2- metastatic breast cancer. Cancer Res. 2023;83:GS3-06.

Google Scholar 

Yuan Y, Lee JS, Yost SE, Frankel PH, Ruel C, Egelston CA, Guo W, Padam S, Tang A, Martinez N, Schmolze D, Presant C, Ebrahimi B, Yeon C, Sedrak M, Patel N, Portnow J, Lee P, Mortimer J. Phase I/II trial of palbociclib, pembrolizumab and letrozole in patients with hormone receptor-positive metastatic breast cancer. Eur J Cancer. 2021;154:11–20.

Google Scholar 

Jerusalem G, Prat A, Salgado R, Reinisch M, Saura C, Ruiz-Borrego M, Nikolinakos P, Ades F, Filian J, Huang N, Mazzei-Abba A, Tolane SM. Neoadjuvant nivolumab + palbociclib + anastrozole for oestrogen receptor-positive/human epidermal growth factor receptor 2-negative primary breast cancer: results from CheckMate 7A8. Breast. 2023;72:103580.

Google Scholar 

Okines A, Moghadam H, Sparks L, Mohammed K, Dunne K, Nerurkar A, Osin P, Swift C, Sardinha R, Turner N. Abstract P4–01-02: Results from a dose escalation phase 1b study of palbociclib and avelumab in advanced breast cancer in the PAveMenT Trial. Cancer Res. 2023;83(5):P4-01.

Google Scholar 

Herold CI, Trippa L, Li T, Do K, Bardia A, Anderson L, Montazeri K, Pittenger J, Andrews C, Mittendorf EA, Goel S, Winer EP, Shapiro GI, Tolaney SM. Abstract P3–14-03: A phase 1b study of the CDK4/6 inhibitor ribociclib in combination with the PD-1 inhibitor spartalizumab in patients with hormone receptor-positive metastatic breast cancer (HR+ MBC) and metastatic ovarian cancer (MOC). Cancer Res. 2020;80(4):P3-14.

Google Scholar 

Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856–67.

Google Scholar 

Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, Keam B, Kang H, Muro K, Weiss J, Geva R, Lin CC, Chung HC, Meister A, Dolled-Filhart M, Pathiraja K, Cheng JD, Seiwert TY. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J Clin Oncol. 2016;34(32):3838–45.

Google Scholar 

Wise-Draper TM, Gulati S, Palackdharry S, Hinrichs BH, Worden FP, Old M, Dunlap NE, Kaczmar JM, Patil Y, Riaz MK, Tang A, Mark J, Zender C, Gillenwater AM, Bell D, Kurtzweil N, Mathews M, Allen CL, Mierzwa ML, Casper K, Jandarov R, Medvedovic M, Lee JJ, Harun N, Takiar V, Gillison M. Phase II Clinical Trial of Neoadjuvant and Adjuvant Pembrolizumab in Resectable Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2022;28(7):1345–52.

Google Scholar 

Yen CJ, Kiyota N, Hanai N, Takahashi S, Yokota T, Iwae S, Shimizu Y, Hong RL, Goto M, Kang JH, Li WSK, Ferris RL, Gillison M, Endo T, Jayaprakash V, Tahara M. Two-year follow-up of a randomized phase III clinical trial of nivolumab vs. the investigator’s choice of therapy in the Asian population for recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141). Head Neck. 2020;42(10):2852–62.

Google Scholar 

Zolkind P, Uppaluri R. Checkpoint immunotherapy in head and neck cancers. Cancer Metastasis Rev. 2017;36(3):475–89.

Google Scholar 

Taberna M, Mena M, Pavón MA, Alemany L, Gillison ML, Mesía R. Human papillomavirus-related oropharyngeal cancer. Ann Oncol. 2017;28(10):2386–98.

Google Scholar 

van Caloen G, Machiels JP. Potential role of cyclin-dependent kinase 4/6 inhibitors in the treatment of squamous cell carcinoma of the head and neck. Curr Opin Oncol. 2019;31(3):122–30.

Google Scholar 

Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma—backbone or add-on in immune-oncology? Cancer Metastasis Rev. 2021;40(1):153–71.

Google Scholar 

Sridaran D, Ramamoorthi G, MahaboobKhan R, Kumpati P. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression. Tumour Biol. 2016;37(10):13307–22.

Google Scholar 

Van Caloen G. Preclinical activity of cyclin-dependent kinase 4/6 inhibitor in squamous cell carcinoma of the head and neck. European J Cancer. 2016;69:S128.

Google Scholar 

van Caloen G, Schmitz S, El Baroudi M, Caignet X, Pyr Dit Ruys S, Roger PP, Vertommen D, Machiels JP. Preclinical activity of ribociclib in squamous cell carcinoma of the head and neck. Mol Cancer Ther. 2020;19(3):777–89.

Google Scholar 

Comments (0)

No login
gif