Progress in the mechanistic understanding of NETs formation in cancer

Dahlgren C, Forsman H, Sundqvist M, Bjorkman L, Martensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol. 2024. https://doi.org/10.1093/jleuko/qiae165.

Article  PubMed  Google Scholar 

Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of neutrophil extracellular trap formation and regulation in cancers. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241210265.

Article  PubMed  PubMed Central  Google Scholar 

Awasthi D, Sarode A. Neutrophils at the crossroads: unraveling the multifaceted role in the tumor microenvironment. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25052929.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Chen J, Sun J, Li K. The formation of NETs and their mechanism of promoting tumor metastasis. J Oncol. 2023;2023:7022337. https://doi.org/10.1155/2023/7022337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

Article  CAS  PubMed  Google Scholar 

Guo H, Wang Z, Yin K, Ma R, Zhang Y, Yin F, et al. Sciellin promotes the development and progression of thyroid cancer through the JAK2/STAT3 signaling pathway. Mol Carcinog. 2024;63(4):701–13. https://doi.org/10.1002/mc.23682.

Article  CAS  PubMed  Google Scholar 

Teijeira A, Garasa S, Ochoa MC, Villalba M, Olivera I, Cirella A, et al. IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy. Clin Cancer Res. 2021;27(9):2383–93. https://doi.org/10.1158/1078-0432.CCR-20-1319.

Article  CAS  PubMed  Google Scholar 

Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, et al. Neutrophil extracellular traps in tumors and potential use of traditional herbal medicine formulations for its regulation. Int J Nanomedicine. 2024;19:2851–77. https://doi.org/10.2147/IJN.S449181.

Article  PubMed  PubMed Central  Google Scholar 

Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47. https://doi.org/10.1038/nri.2017.105.

Article  CAS  PubMed  Google Scholar 

Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. https://doi.org/10.1038/nm.4294.

Article  CAS  PubMed  Google Scholar 

Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 2016;7: 302. https://doi.org/10.3389/fimmu.2016.00302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671.

Article  CAS  PubMed  Google Scholar 

Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33. https://doi.org/10.1016/j.jcmgh.2021.03.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest. 2018;48(2): e12919. https://doi.org/10.1111/eci.12919.

Article  PubMed  Google Scholar 

Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44. https://doi.org/10.1038/cdd.2009.96.

Article  CAS  PubMed  Google Scholar 

Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93. https://doi.org/10.1038/nm.2847.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024;57(4):752–71. https://doi.org/10.1016/j.immuni.2024.03.002.

Article  CAS  PubMed  Google Scholar 

Singel KL, Grzankowski KS, Khan A, Grimm MJ, D’Auria AC, Morrell K, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br J Cancer. 2019;120(2):207–17. https://doi.org/10.1038/s41416-018-0339-8.

Article  CAS  PubMed  Google Scholar 

Li J, Xia Y, Sun B, Zheng N, Li Y, Pang X, et al. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun Signal. 2023;21(1):86. https://doi.org/10.1186/s12964-023-01112-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi H, Pan Y, Xiang G, Wang M, Huang Y, He L, et al. A novel NET-related gene signature for predicting DLBCL prognosis. J Transl Med. 2023;21(1):630. https://doi.org/10.1186/s12967-023-04494-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 2021;12(1):2776. https://doi.org/10.1038/s41467-021-23086-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-beta activation. Cancer Cell. 2023;41(4):757–75. https://doi.org/10.1016/j.ccell.2023.03.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, et al. Mesothelin secretion by pancreatic cancer cells co-opts macrophages and promotes metastasis. Cancer Res. 2024;84(4):527–44. https://doi.org/10.1158/0008-5472.CAN-23-1542.

Article  CAS  PubMed  Google Scholar 

Ahmed C, Greve HJ, Garza-Lombo C, Malley JA, Johnson JA Jr, Oblak AL, et al. Peripheral HMGB1 is linked to O(3) pathology of disease-associated astrocytes and amyloid. Alzheimers Dement. 2024;20(5):3551–66. https://doi.org/10.1002/alz.13825.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shayan S, Arashkia A, Bahramali G, Azadmanesh K. Investigating the effects of HMGB1 overexpression on colorectal cancer cell migration via oncolytic herpes simplex virus type 1 (oHSV-1). Avicenna J Med Biotechnol. 2024;16(2):120–9. https://doi.org/10.18502/ajmb.v16i2.14863.

Wu T, Zhang W, Yang G, Li H, Chen Q, Song R, et al. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget. 2016;7(31):50417–27. https://doi.org/10.18632/oncotarget.10413.

Comments (0)

No login
gif