Dahlgren C, Forsman H, Sundqvist M, Bjorkman L, Martensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol. 2024. https://doi.org/10.1093/jleuko/qiae165.
Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of neutrophil extracellular trap formation and regulation in cancers. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241210265.
Article PubMed PubMed Central Google Scholar
Awasthi D, Sarode A. Neutrophils at the crossroads: unraveling the multifaceted role in the tumor microenvironment. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25052929.
Article PubMed PubMed Central Google Scholar
Li J, Chen J, Sun J, Li K. The formation of NETs and their mechanism of promoting tumor metastasis. J Oncol. 2023;2023:7022337. https://doi.org/10.1155/2023/7022337.
Article CAS PubMed PubMed Central Google Scholar
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.
Article CAS PubMed Google Scholar
Guo H, Wang Z, Yin K, Ma R, Zhang Y, Yin F, et al. Sciellin promotes the development and progression of thyroid cancer through the JAK2/STAT3 signaling pathway. Mol Carcinog. 2024;63(4):701–13. https://doi.org/10.1002/mc.23682.
Article CAS PubMed Google Scholar
Teijeira A, Garasa S, Ochoa MC, Villalba M, Olivera I, Cirella A, et al. IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy. Clin Cancer Res. 2021;27(9):2383–93. https://doi.org/10.1158/1078-0432.CCR-20-1319.
Article CAS PubMed Google Scholar
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, et al. Neutrophil extracellular traps in tumors and potential use of traditional herbal medicine formulations for its regulation. Int J Nanomedicine. 2024;19:2851–77. https://doi.org/10.2147/IJN.S449181.
Article PubMed PubMed Central Google Scholar
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47. https://doi.org/10.1038/nri.2017.105.
Article CAS PubMed Google Scholar
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.
Article CAS PubMed PubMed Central Google Scholar
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87. https://doi.org/10.1038/nm.4294.
Article CAS PubMed Google Scholar
Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 2016;7: 302. https://doi.org/10.3389/fimmu.2016.00302.
Article CAS PubMed PubMed Central Google Scholar
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027.
Article CAS PubMed PubMed Central Google Scholar
Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671.
Article CAS PubMed Google Scholar
Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021;12(1):321–33. https://doi.org/10.1016/j.jcmgh.2021.03.002.
Article CAS PubMed PubMed Central Google Scholar
Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest. 2018;48(2): e12919. https://doi.org/10.1111/eci.12919.
Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44. https://doi.org/10.1038/cdd.2009.96.
Article CAS PubMed Google Scholar
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93. https://doi.org/10.1038/nm.2847.
Article CAS PubMed PubMed Central Google Scholar
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024;57(4):752–71. https://doi.org/10.1016/j.immuni.2024.03.002.
Article CAS PubMed Google Scholar
Singel KL, Grzankowski KS, Khan A, Grimm MJ, D’Auria AC, Morrell K, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br J Cancer. 2019;120(2):207–17. https://doi.org/10.1038/s41416-018-0339-8.
Article CAS PubMed Google Scholar
Li J, Xia Y, Sun B, Zheng N, Li Y, Pang X, et al. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun Signal. 2023;21(1):86. https://doi.org/10.1186/s12964-023-01112-5.
Article CAS PubMed PubMed Central Google Scholar
Shi H, Pan Y, Xiang G, Wang M, Huang Y, He L, et al. A novel NET-related gene signature for predicting DLBCL prognosis. J Transl Med. 2023;21(1):630. https://doi.org/10.1186/s12967-023-04494-9.
Article CAS PubMed PubMed Central Google Scholar
Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 2021;12(1):2776. https://doi.org/10.1038/s41467-021-23086-z.
Article CAS PubMed PubMed Central Google Scholar
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-beta activation. Cancer Cell. 2023;41(4):757–75. https://doi.org/10.1016/j.ccell.2023.03.008.
Article CAS PubMed PubMed Central Google Scholar
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, et al. Mesothelin secretion by pancreatic cancer cells co-opts macrophages and promotes metastasis. Cancer Res. 2024;84(4):527–44. https://doi.org/10.1158/0008-5472.CAN-23-1542.
Article CAS PubMed Google Scholar
Ahmed C, Greve HJ, Garza-Lombo C, Malley JA, Johnson JA Jr, Oblak AL, et al. Peripheral HMGB1 is linked to O(3) pathology of disease-associated astrocytes and amyloid. Alzheimers Dement. 2024;20(5):3551–66. https://doi.org/10.1002/alz.13825.
Article CAS PubMed PubMed Central Google Scholar
Shayan S, Arashkia A, Bahramali G, Azadmanesh K. Investigating the effects of HMGB1 overexpression on colorectal cancer cell migration via oncolytic herpes simplex virus type 1 (oHSV-1). Avicenna J Med Biotechnol. 2024;16(2):120–9. https://doi.org/10.18502/ajmb.v16i2.14863.
Wu T, Zhang W, Yang G, Li H, Chen Q, Song R, et al. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget. 2016;7(31):50417–27. https://doi.org/10.18632/oncotarget.10413.
Comments (0)