van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–72. https://doi.org/10.1016/j.bbamem.2017.04.006.
Article CAS PubMed Google Scholar
Alvaro D, Cantafora A, Attili AF, GinanniCorradini S, De Luca C, Minervini G, Di Biase A, Angelico M. Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comp Biochem Physiol B. 1986;83(3):551–4. https://doi.org/10.1016/0305-0491(86)90295-6.
Article CAS PubMed Google Scholar
Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956;222(1):193–214.
Killian JA. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998;1376(3):401–15. https://doi.org/10.1016/s0304-4157(98)00017-3.
Article CAS PubMed Google Scholar
Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993;294(Pt 1):1–14. https://doi.org/10.1042/bj2940001.
Article CAS PubMed PubMed Central Google Scholar
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal. 2022;15(729):eabo0264. https://doi.org/10.1126/scisignal.abo0264.
Papangelis A, Ulven T. Synthesis of lysophosphatidylcholine and mixed phosphatidylcholine. J Org Chem. 2022;87(12):8194–7. https://doi.org/10.1021/acs.joc.2c00335.
Article CAS PubMed Google Scholar
Callao V, Montoya E. Toxohormone-like factor from microorganisms with impaired respiration. Science. 1961;134(3495):2041–2. https://doi.org/10.1126/science.134.3495.2041.
Article CAS PubMed Google Scholar
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, Cao Y. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76. https://doi.org/10.1186/s12943-017-0646-3.
Article CAS PubMed PubMed Central Google Scholar
Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48(1):20–38. https://doi.org/10.3109/10409238.2012.735643.
Article CAS PubMed Google Scholar
Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta. 2009;1791(9):949–55. https://doi.org/10.1016/j.bbalip.2009.02.009.
Article CAS PubMed PubMed Central Google Scholar
Di Conza G, Tsai CH, Gallart-Ayala H, Yu YR, Franco F, Zaffalon L, Xie X, Li X, Xiao Z, Raines LN, et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat Immunol. 2021;22(11):1403–15. https://doi.org/10.1038/s41590-021-01047-4.
Article CAS PubMed PubMed Central Google Scholar
Ping Y, Shan J, Qin H, Li F, Qu J, Guo R, Han D, Jing W, Liu Y, Liu J, et al. PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8(+) T cell ferroptosis. Immunity. 2024;57(9):2122-39.e9. https://doi.org/10.1016/j.immuni.2024.08.003.
Article CAS PubMed Google Scholar
Yi K, Zhan Q, Wang Q, Tan Y, Fang C, Wang Y, Zhou J, Yang C, Li Y, Kang C. PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2. Neuro Oncol. 2021;23(3):387–99. https://doi.org/10.1093/neuonc/noaa255.
Article CAS PubMed Google Scholar
Henkels KM, Muppani NR, Gomez-Cambronero J. PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS ONE. 2016;11(11):e0166553. https://doi.org/10.1371/journal.pone.0166553.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-González A, Ramírez de Molina A, Bañez-Coronel M, Megias D, Lacal JC. Inhibition of choline kinase renders a highly selective cytotoxic effect in tumour cells through a mitochondrial independent mechanism. Int J Oncol. 2005; 26(4):999-1008.
Gibellini F, Smith TK. The Kennedy pathway–de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–28. https://doi.org/10.1002/iub.337.
Article CAS PubMed Google Scholar
Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18. https://doi.org/10.1111/tra.12230.
Article CAS PubMed Google Scholar
Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013;1831(3):626–32. https://doi.org/10.1016/j.bbalip.2012.07.017.
Article CAS PubMed Google Scholar
Hörl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, Köfeler H, Höfler G, Frank S, Bogner-Strauss JG, et al. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem. 2011;286(19):17338–50. https://doi.org/10.1074/jbc.M111.234534.
Article CAS PubMed PubMed Central Google Scholar
Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res. 2009;50:S46-51. https://doi.org/10.1194/jlr.R800035-JLR200.
Article CAS PubMed PubMed Central Google Scholar
O’Donnell VB. New appreciation for an old pathway: the lands cycle moves into new arenas in health and disease. Biochem Soc Trans. 2022;50(1):1–11. https://doi.org/10.1042/bst20210579.
Article CAS PubMed PubMed Central Google Scholar
Khan SA, Ilies MA. The phospholipase A2 superfamily: structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021353.
Article PubMed PubMed Central Google Scholar
Khan WA, Blobe GC, Hannun YA. Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal. 1995;7(3):171–84. https://doi.org/10.1016/0898-6568(94)00089-t.
Article CAS PubMed Google Scholar
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (2020). 2023;4(5):e363. https://doi.org/10.1002/mco2.363.
Article CAS PubMed Google Scholar
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020;247:117443. https://doi.org/10.1016/j.lfs.2020.117443.
Article CAS PubMed Google Scholar
Eurtivong C, Pilkington LI, van Rensburg M, White RM, Brar HK, Rees S, Paulin EK, Xu CS, Sharma N, Leung IKH, et al. Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. Eur J Med Chem. 2020;187:111919. https://doi.org/10.1016/j.ejmech.2019.111919.
Article CAS PubMed Google Scholar
Eurtivong C, Leung E, Sharma N, Leung IKH, Reynisson J. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 2023. https://doi.org/10.3390/molecules28155637.
Comments (0)