The role of phosphatidylcholine metabolism in tumors

van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–72. https://doi.org/10.1016/j.bbamem.2017.04.006.

Article  CAS  PubMed  Google Scholar 

Alvaro D, Cantafora A, Attili AF, GinanniCorradini S, De Luca C, Minervini G, Di Biase A, Angelico M. Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comp Biochem Physiol B. 1986;83(3):551–4. https://doi.org/10.1016/0305-0491(86)90295-6.

Article  CAS  PubMed  Google Scholar 

Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956;222(1):193–214.

CAS  PubMed  Google Scholar 

Killian JA. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998;1376(3):401–15. https://doi.org/10.1016/s0304-4157(98)00017-3.

Article  CAS  PubMed  Google Scholar 

Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993;294(Pt 1):1–14. https://doi.org/10.1042/bj2940001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal. 2022;15(729):eabo0264. https://doi.org/10.1126/scisignal.abo0264.

Article  PubMed  Google Scholar 

Papangelis A, Ulven T. Synthesis of lysophosphatidylcholine and mixed phosphatidylcholine. J Org Chem. 2022;87(12):8194–7. https://doi.org/10.1021/acs.joc.2c00335.

Article  CAS  PubMed  Google Scholar 

Callao V, Montoya E. Toxohormone-like factor from microorganisms with impaired respiration. Science. 1961;134(3495):2041–2. https://doi.org/10.1126/science.134.3495.2041.

Article  CAS  PubMed  Google Scholar 

Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, Cao Y. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76. https://doi.org/10.1186/s12943-017-0646-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48(1):20–38. https://doi.org/10.3109/10409238.2012.735643.

Article  CAS  PubMed  Google Scholar 

Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta. 2009;1791(9):949–55. https://doi.org/10.1016/j.bbalip.2009.02.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Conza G, Tsai CH, Gallart-Ayala H, Yu YR, Franco F, Zaffalon L, Xie X, Li X, Xiao Z, Raines LN, et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat Immunol. 2021;22(11):1403–15. https://doi.org/10.1038/s41590-021-01047-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ping Y, Shan J, Qin H, Li F, Qu J, Guo R, Han D, Jing W, Liu Y, Liu J, et al. PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8(+) T cell ferroptosis. Immunity. 2024;57(9):2122-39.e9. https://doi.org/10.1016/j.immuni.2024.08.003.

Article  CAS  PubMed  Google Scholar 

Yi K, Zhan Q, Wang Q, Tan Y, Fang C, Wang Y, Zhou J, Yang C, Li Y, Kang C. PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2. Neuro Oncol. 2021;23(3):387–99. https://doi.org/10.1093/neuonc/noaa255.

Article  CAS  PubMed  Google Scholar 

Henkels KM, Muppani NR, Gomez-Cambronero J. PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS ONE. 2016;11(11):e0166553. https://doi.org/10.1371/journal.pone.0166553.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez-González A, Ramírez de Molina A, Bañez-Coronel M, Megias D, Lacal JC. Inhibition of choline kinase renders a highly selective cytotoxic effect in tumour cells through a mitochondrial independent mechanism. Int J Oncol. 2005; 26(4):999-1008.

Gibellini F, Smith TK. The Kennedy pathway–de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–28. https://doi.org/10.1002/iub.337.

Article  CAS  PubMed  Google Scholar 

Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18. https://doi.org/10.1111/tra.12230.

Article  CAS  PubMed  Google Scholar 

Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013;1831(3):626–32. https://doi.org/10.1016/j.bbalip.2012.07.017.

Article  CAS  PubMed  Google Scholar 

Hörl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, Köfeler H, Höfler G, Frank S, Bogner-Strauss JG, et al. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem. 2011;286(19):17338–50. https://doi.org/10.1074/jbc.M111.234534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res. 2009;50:S46-51. https://doi.org/10.1194/jlr.R800035-JLR200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell VB. New appreciation for an old pathway: the lands cycle moves into new arenas in health and disease. Biochem Soc Trans. 2022;50(1):1–11. https://doi.org/10.1042/bst20210579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SA, Ilies MA. The phospholipase A2 superfamily: structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021353.

Article  PubMed  PubMed Central  Google Scholar 

Khan WA, Blobe GC, Hannun YA. Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal. 1995;7(3):171–84. https://doi.org/10.1016/0898-6568(94)00089-t.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (2020). 2023;4(5):e363. https://doi.org/10.1002/mco2.363.

Article  CAS  PubMed  Google Scholar 

Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020;247:117443. https://doi.org/10.1016/j.lfs.2020.117443.

Article  CAS  PubMed  Google Scholar 

Eurtivong C, Pilkington LI, van Rensburg M, White RM, Brar HK, Rees S, Paulin EK, Xu CS, Sharma N, Leung IKH, et al. Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. Eur J Med Chem. 2020;187:111919. https://doi.org/10.1016/j.ejmech.2019.111919.

Article  CAS  PubMed  Google Scholar 

Eurtivong C, Leung E, Sharma N, Leung IKH, Reynisson J. Phosphatidylcholine-specific phospholipase C as a promising drug target. Molecules. 2023. https://doi.org/10.3390/molecules28155637.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif