Advances in cancer therapy using fluorinated chitosan: a promising nanoplatform for drug delivery

Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Caballero AH, Acosta N, Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Caballero AH, Acosta N. Chitosan: an overview of its properties and applications. Polymers. 2021;13(19):3256.

CAS  PubMed  PubMed Central  Google Scholar 

Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym. 2012;87:995–1012.

CAS  Google Scholar 

Morin-Crini N, Lichtfouse E, Torri G, Crini G. Fundamentals and applications of chitosan. 2019.

Hudson SM, Smith C. Polysaccharides: chitin and chitosan: chemistry and technology of Thei. In: Biopolymers from renewable resources. 1998.

Jasim RAF. Medical pharmaceutical, and biomedical applications of chitosan: a review. Med J Babylon. 2021;18:291–4.

Google Scholar 

Mikušová V, Mikuš P, Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652.

PubMed  PubMed Central  Google Scholar 

Zhou J, Zhou L, Chen Z-Y, Sun J, Guo X-W, Wang H-R, Zhang X-Y, Liu Z-R, Liu J, Zhang K, Zhang X. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs. J Dent. 2025;152:105489.

CAS  PubMed  Google Scholar 

Haider A, Khan S, Iqbal DN, Shrahili M, Haider S, Mohammad K, Mohammad A, Rizwan M, Kanwal Q, Mustafa G. Advances in chitosan-based drug delivery systems: a comprehensive review for therapeutic applications. Eur Polym J. 2024. https://doi.org/10.1016/j.eurpolymj.2024.112983.

Google Scholar 

Elsabee MZ, Morsi RE, Al-Sabagh AM. Surface active properties of chitosan and its derivatives. Colloids Surf B Biointerfaces. 2009;74:1–16.

CAS  PubMed  Google Scholar 

Cele ZED, Somboro AM, Amoako DG, Ndlandla LF, Balogun MO. Fluorinated quaternary chitosan derivatives: synthesis, characterization, antibacterial activity, and killing kinetics. ACS Omega. 2020;5:29657–66.

CAS  PubMed  PubMed Central  Google Scholar 

Pokhrel S, Yadav PN. Functionalization of chitosan polymer and their applications. J Macromol Sci Part A. 2019;56:450–75.

CAS  Google Scholar 

Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Martino PD, Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a versatile tool for 19F-MRI agent’s formulation: a glimpse into the use of perfluorinated and fluorinated compounds in nanoparticles. Pharmaceutics. 2022;14(2):382.

CAS  PubMed  PubMed Central  Google Scholar 

Xia R, Zheng X, Li C, Yuan X, Wang J, Xie Z, Jing X. Nanoscale covalent organic frameworks with donor–acceptor structure for enhanced photothermal ablation of tumors. ACS Nano. 2021;15:7638–48.

CAS  PubMed  Google Scholar 

Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release. 2024;373:640–51.

CAS  PubMed  Google Scholar 

Feng C, Wang Y, Xu J, Zheng Y, Zhou W, Wang Y, Luo C. Precisely tailoring molecular structure of doxorubicin prodrugs to enable stable nanoassembly, rapid activation, and potent antitumor effect. Pharmaceutics. 2024. https://doi.org/10.3390/pharmaceutics16121582.

PubMed  PubMed Central  Google Scholar 

Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: a new platform for cancer therapy. Adv Colloid Interface Sci. 2025;340:103470.

CAS  PubMed  Google Scholar 

Yuan H, Chen Y, Hu Y, Li Y, Zhang H, Zhang S, Chen Q, Zhou W, Sun J, He Z, Wang Y, Luo C. Disulfide bond-driven nanoassembly of lipophilic epirubicin prodrugs for breast cancer therapy. J Pharm Invest. 2025;2025:1–14.

Google Scholar 

Cohen E, Poverenov E. Hydrophilic Chitosan Derivatives: Synthesis And Applications. Chem Eur J. 2022;28:e202202156.

CAS  PubMed  Google Scholar 

Gzyra-Jagieła K, Pęczek B, Wiśniewska-Wrona M, Gutowska N. Physicochemical properties of chitosan and its degradation products, chitin and chitosan. 2019.

Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated organic polymers for cancer drug delivery. Adv Mater. 2024. https://doi.org/10.1002/adma.202404645.

PubMed  Google Scholar 

Hamdi M, Nasri R, Hajji S, Nigen M, Li S, Nasri M. Acetylation degree, a key parameter modulating chitosan rheological, thermal and film-forming properties. Food Hydrocolloids. 2019;87:48–60.

CAS  Google Scholar 

Cui Z, Drioli E, Lee YM. Recent progress in fluoropolymers for membranes. Prog Polym Sci. 2014;39:164–98.

CAS  Google Scholar 

Mohseni M, Lahiri SK, Nadaraja AV, Sundararaj U, Golovin K. Durable and comfortable superoleophobic fabrics utilizing ultra-short-chain fluorinated surface chemistry. Chem Eng J. 2023;471:144726.

CAS  Google Scholar 

Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–75.

CAS  PubMed  Google Scholar 

Kiran NS, Yashaswini C, Chatterjee A, Prajapati B. Impact of gastrointestinal dysbiosis on tryptophan metabolism and neurological cancer progression. Med Oncol. 2025;42:412.

PubMed  Google Scholar 

AlAsmari AF, Ali N, Alharbi M, Alqahtani F, Alasmari F, Almoqbel D, AlSwayyed M, Alshammari A, Alanazi MM, Alhoshani A, Al-Harbi NO. Geraniol ameliorates doxorubicin-mediated kidney injury through alteration of antioxidant status, inflammation, and apoptosis: potential roles of NF-κB and Nrf2/Ho-1. Nutrients. 2022. https://doi.org/10.3390/nu14081620.

PubMed  PubMed Central  Google Scholar 

Dudhat K, Pirojiya H, Bhalala K, Mori D, Prajapati B. Phospholipid-drug conjugates in cancer therapy: emerging paradigms and future directions. AAPS PharmSciTech. 2025;26:190.

PubMed  Google Scholar 

Patel P, Gondhiya A, Vadia N, Kapoor DU, Prajapati BG. Functionalized curcumin-loaded mesoporous nanoparticulate drug delivery system for oral cancer: formulation design, optimization, and in vitro & in vivo evaluation. Biomed Mater Devices. 2025;2025:1–17.

Google Scholar 

Patel HJ, Sharma JB, Kapoor DU, Prajapati BG. Nanocrystal drug delivery systems significantly enhance the therapeutic efficacy of anticancer agents. Biomed Mater Devices. 2025;2025:1–18.

Google Scholar 

Pandya T, Joshi D, Presswala Z, Kulkarni M, Patel R, Patel S, Bhattacharya S, Prajapati BG. Advanced therapeutic strategies using thermo-sensitive chitosan/pectin hydrogel in the treatment of multiple cancers. Carbohydr Polym. 2025;357:123454.

CAS  PubMed  Google Scholar 

Kumar A, Yadav S, Pramanik J, Sivamaruthi BS, Jayeoye TJ, Prajapati BG, Chaiyasut C. Chitosan-based composites: development and perspective in food preservation and biomedical applications. Polymers. 2023. https://doi.org/10.3390/polym15153150.

PubMed  PubMed Central  Google Scholar 

Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: recent advances. Carbohydr Polym. 2021;272:118464.

CAS  PubMed  Google Scholar 

Suarato G, Li W, Meng Y. Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: a review. Biointerphases. 2016. https://doi.org/10.1116/1.4944661.

PubMed  Google Scholar 

Begum RF, Singh S, Prajapati B, Sumithra M, Patel RJ. Advanced targeted drug delivery of bioactive agents fortified with graft chitosan in management of cancer: a review. Curr Med Chem. 2025;32:3759–89.

CAS  PubMed  Google Scholar 

Sa P, Sahoo SK, Dilnawaz F. Responsive role of nanomedicine in the tumor microenvironment and cancer drug resistance. Curr Med Chem. 2023. https://doi.org/10.2174/0929867329666220922111336.

PubMed  Google Scholar 

Yin L, Zhong Z. Nanoparticles. In: Biomaterials science. 2020.

Cheng X, Zeng X, Zheng Y, Wang X, Tang R. Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo. Carbohydr Polym. 2019;208:59–69.

CAS  PubMed  Google Scholar 

Lepoittevin B, Elzein T, Dragoe D, Bejjani A, Lemée F, Levillain J, Bazin P, Roger P, Dez I. Hydrophobization of chitosan films by surface grafting with fluorinated polymer brushes. Carbohydr Polym. 2019;205:437–46.

CAS  PubMed  Google Scholar 

Wang J, Yang F, Lu D-Q, Wang X, Li J, Fu Q, Li R, Wu D, Liu D, Xu A, Guan D. Synthesis, characterization, and application of films made from highly substituted N-perfluoroacylated chitosan. Int J Biol Macromol. 2024;282:136716.

CAS  PubMed  Google Scholar 

Belabassi Y, Moreau J, Gheran V, Henoumont C, Robert A, Callewaert M, Rigaux G, Cadiou C, Elst LV, Laurent S, Muller RN, Dinischiotu A, Voicu SN, Chuburu F. Synthesis and characterization of pegylated and fluorinated chitosans: application to the synthesis of targeted nanoparticles for drug delivery. Biomacromol. 2017;18:2756–66.

CAS  Google Scholar 

Furtado GTFDS, Fideles TB, Cruz RDCAL, Souza JWDL, Rodriguez Barbero MA, Fook MVL. Chitosan/NaF particles prepared via ionotropic gelation: evaluation of particles size and morphology. Mater Res. 2018;21:e20180101.

Google Scholar 

Van Bavel N, Issler T, Pang L, Anikovskiy M, Prenner EJ. A simple method for synthesis of chitosan nanoparticles with ionic gelation and homogenization. Molecules. 2023;28:4328.

PubMed  PubMed Central  Google Scholar 

Dong Y, Ng WK, Shen S, Kim S, Tan RBH. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym. 2013;94:940–5.

CAS 

Comments (0)

No login
gif