Intratetrad Mating: 60 Years Later

Zakharov, I.A., Genetic consequences of intratetrad mating of ascospores in yeasts, Vestn. Leningr. Univ., 1965, no. 9, pp. 124–129.

Zakharov, I.A., Increase in homozygosity as a result of intratetrad and intraoctad fertilization in fungi, Genetika (Moscow), 1968, vol. 4, pp. 98–105.

Google Scholar 

Oudemans, P.V., Alexander, H.M., Antonovics, J., et al., The distribution of mating-type bias in natural population of the anther-smut Ustilago violacea on Silene alba in Virginia, Mycologia, 1998, vol. 90, pp. 372–381.

Article  Google Scholar 

Antonovics, J., O’Keefe, K., and Hood, M.E., Theoretical population genetics of mating-type linked haplo-lethal alleles, Int. J. Plant Sci., 1998, vol. 159, pp. 192–198.

Article  Google Scholar 

Zakharov, I.A., Intratetrad mating and its genetic and evolutionary consequences, Russ. J. Genet., 2005, vol. 41, no. 4, pp. 402–411. https://doi.org/10.1007/s11177-005-0103-z

Article  CAS  Google Scholar 

Emerson, E., Meiotic recombination in fungi with special reference to tetrad analysis, in Methodology in Basic Genetics, San Francisco: Holden-Day, 1963, p. 167.

Google Scholar 

Zakharov, I.A. and Matselyukh, B.P., Geneticheskie karty mikroorganizmov (Genetic Maps of Microorganisms), Kiev: Naukova Dumka, 1986.

Zakharov, I.A., Several regularities of gene location in eukaryotic chromosomes, Genetika (Moscow), 1986, vol. 22, no. 12, pp. 2620–2624.

CAS  PubMed  Google Scholar 

Hood, M.E. and Antonovics, J., Two-celled promycelia and mating type segregation in Ustilago violacea (=Microbotryum violaceum), Int. J. Plant Sci., 1998, vol. 159, pp. 199–205.

Article  Google Scholar 

Giraud, T., Jonot, O., and Shykoff, J.A., Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations, Int. J. Plant Sci., 2005, vol. 166, no. 4, pp. 649–657.

Thomas, A., Shykoff, J., Jonot, O., and Giraud, T., Sex-ratio bias in populations of the phytopathogenic fungus Microbotryum violaceum from several host species, Int. J. Plant Sci., 2003, vol. 164, no. 4, pp. 641–647.

Article  Google Scholar 

Hood, M.E. and Antonovics, J., Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbobotryum violaceum (=Ustilago violacea), Heredity, 2000, vol. 85, pp. 231–241.

Article  PubMed  Google Scholar 

Hood, M.E. and Antonovics, J., Mating within the meiotic tetrad and the maintenance of genomic heterozygosity, Genetics, 2004, vol. 166, pp. 1751–1759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antonovics, J. and Abrams, J.Y., Intratetrad mating and the evolution of linkage relationships, Evolution, 2004, vol. 58, pp. 702–709.

PubMed  Google Scholar 

Hood, M.E., Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum, Genetics, 2002, vol. 160, pp. 457–461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hood, M.E., Petit, E., and Giraud, T., Extensive divergence between mating-type chromosomes of the anther-smut fungus, Genetics, 2013, vol. 193, pp. 309–315. https://doi.org/10.1534/genetics.112.146266

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zakharov, I.A., Yurchenko, L.V., and Yarovoi, B.F., Cytoduction: an autonomous transfer of cytoplasmic hereditary factors upon yeast cell mating, Genetika (Moscow), 1969, vol. 5, pp. 136–141.

Google Scholar 

Guillermon, M.A., Recherches sur la germination des spores et la conjugaison chez les Levures, Rev. Genet. Bot., 1905, vol. 509, pp. 337–376.

Google Scholar 

Murphy, H.A. and Zeyl, C.W., Yeast sex: surprisingly high rates of outcrossing between asci, PLoS One, 2010, vol. 5, no. 5, p. e10461. https://doi.org/10.1371/journal.pone.0010461

Article  CAS  PubMed  PubMed Central  Google Scholar 

McClure, A.W., Jacobs, K.C., Zyla, T.R., et al., Mating in wild yeast: delayed interest in sex after spore germination, Mol. Biol. Cell., 2018, vol. 29, pp. 3119–3127. https://doi.org/10.1091/mbc.E18-08-0528

Article  CAS  PubMed  PubMed Central  Google Scholar 

James, A.P., The spectrum of severity of mutant effects: haploid effects in yeast, Genetics, 1959, vol. 44, pp. 1309–1324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inge-Vechtomov, S.G., New genetic strains of yeast Saccharomyces cerevisiae, Vestn. Leningr. Univ., 1963, no. 21, p. 117.

Taxis, C., Keller, P., Kavagiou, Z., et al., Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system, J. Cell Biol., 2005, vol. 171, pp. 627–640. https://doi.org/10.1083/jcb.200507168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, L.J., Koufopanou, V., Goddard, M.R., et al., Population genetics of the wild yeast Saccharomyces paradoxus, Genetics, 2004, vol. 166, pp. 43–52. https://doi.org/10.1534/genetics.166.1.43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai, I.J., Bensasson, D., Burt, A., et al., Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 4957–4962. https://doi.org/10.1073/pnas.0707314105

Ezov, T.K., Chang, S.-L., Frenkel, Z., et al., Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction, Mol. Ecol., 2010, vol. 19, pp. 121–131. https://doi.org/10.1111/j.1365-294X.2009.04436.x

Article  CAS  Google Scholar 

Miller, E.L. and Greig, D., Spore germination determines yeast inbreeding according to fitness in the local environment, Am. Nat., 2015, vol. 185, pp. 291–301. https://doi.org/10.5061/dryad.r0g9m

Article  PubMed  Google Scholar 

Nishant, K.T., Wei, W., Mancera, E., et al., The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis, PLoS Genet., 2010, vol. 6, no. 9, p.  e1001109. https://doi.org/10.1371/journal.pgen.1001109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reuter, M., Bell, G., and Greig, D., Increased outbreeding in yeast in response to dispersal by an insect vector, Curr. Biol., 2007, vol. 17, pp. R81–R83. https://doi.org/10.1016/j.cub.2006.11.059

Article  CAS  PubMed  Google Scholar 

Papaioannou, I.A., Dutreux, F., Peltie, F.A., et al., Sex without crossing over in the yeast Saccharomycodes ludwigii, Genome Biol., 2021, vol. 22, p. 303. https://doi.org/10.1186/s13059-021-02521-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyakawa, I., Nakahara, A., and Ito, K., Morphology of mitochondrial nucleoids, mitochondria, and nuclei during meiosis and sporulation of the yeast Saccharomycodes ludwigii, J. Gen. Appl. Microbiol., 2012, vol. 58, pp. 43–51.

Article  CAS  PubMed  Google Scholar 

Miyakawa, I., Matsuo, E., Yagi, R., et al., Isolation of interspore bridges from the budding yeast Saccharomycodes ludwigii, Cytologia, 2020, vol. 85, pp. 307–312. https://doi.org/10.1508/cytologia.85.307

Article  CAS  Google Scholar 

Jay, P., Tezenas, E., Veber, A., et al., Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes, PLoS Biol., 2022, vol. 20, no. 7, p. e3001698. https://doi.org/10.1371/journal.pbio.3001698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zakharov, I.A., Heterozygozity maintenance for the lethals in populations reproducing by intratetrad mating, Ekol. Genet., 2009, vol. 7, no. 4, pp. 60–63. https://doi.org/10.17816/ecogen7460-63

Article  Google Scholar 

Johnson, L.J., Antonovics, J., and Hood, M.E., The evolution of intratetrad mating rates, Evolution, 2005, vol. 59, pp. 2525–2532.

PubMed  Google Scholar 

Zakharov, I.A., Intratetrad mating as the driving force behind the formation of sex chromosomes in fungi, Trends Genet. Evol., 2023, vol. 6, no. 1, p. 2522. https://doi.org/10.24294/tge.v6i1.2522

Article  Google Scholar 

Comments (0)

No login
gif