Zakharov, I.A., Genetic consequences of intratetrad mating of ascospores in yeasts, Vestn. Leningr. Univ., 1965, no. 9, pp. 124–129.
Zakharov, I.A., Increase in homozygosity as a result of intratetrad and intraoctad fertilization in fungi, Genetika (Moscow), 1968, vol. 4, pp. 98–105.
Oudemans, P.V., Alexander, H.M., Antonovics, J., et al., The distribution of mating-type bias in natural population of the anther-smut Ustilago violacea on Silene alba in Virginia, Mycologia, 1998, vol. 90, pp. 372–381.
Antonovics, J., O’Keefe, K., and Hood, M.E., Theoretical population genetics of mating-type linked haplo-lethal alleles, Int. J. Plant Sci., 1998, vol. 159, pp. 192–198.
Zakharov, I.A., Intratetrad mating and its genetic and evolutionary consequences, Russ. J. Genet., 2005, vol. 41, no. 4, pp. 402–411. https://doi.org/10.1007/s11177-005-0103-z
Emerson, E., Meiotic recombination in fungi with special reference to tetrad analysis, in Methodology in Basic Genetics, San Francisco: Holden-Day, 1963, p. 167.
Zakharov, I.A. and Matselyukh, B.P., Geneticheskie karty mikroorganizmov (Genetic Maps of Microorganisms), Kiev: Naukova Dumka, 1986.
Zakharov, I.A., Several regularities of gene location in eukaryotic chromosomes, Genetika (Moscow), 1986, vol. 22, no. 12, pp. 2620–2624.
Hood, M.E. and Antonovics, J., Two-celled promycelia and mating type segregation in Ustilago violacea (=Microbotryum violaceum), Int. J. Plant Sci., 1998, vol. 159, pp. 199–205.
Giraud, T., Jonot, O., and Shykoff, J.A., Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations, Int. J. Plant Sci., 2005, vol. 166, no. 4, pp. 649–657.
Thomas, A., Shykoff, J., Jonot, O., and Giraud, T., Sex-ratio bias in populations of the phytopathogenic fungus Microbotryum violaceum from several host species, Int. J. Plant Sci., 2003, vol. 164, no. 4, pp. 641–647.
Hood, M.E. and Antonovics, J., Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbobotryum violaceum (=Ustilago violacea), Heredity, 2000, vol. 85, pp. 231–241.
Hood, M.E. and Antonovics, J., Mating within the meiotic tetrad and the maintenance of genomic heterozygosity, Genetics, 2004, vol. 166, pp. 1751–1759.
Article CAS PubMed PubMed Central Google Scholar
Antonovics, J. and Abrams, J.Y., Intratetrad mating and the evolution of linkage relationships, Evolution, 2004, vol. 58, pp. 702–709.
Hood, M.E., Dimorphic mating-type chromosomes in the fungus Microbotryum violaceum, Genetics, 2002, vol. 160, pp. 457–461.
Article CAS PubMed PubMed Central Google Scholar
Hood, M.E., Petit, E., and Giraud, T., Extensive divergence between mating-type chromosomes of the anther-smut fungus, Genetics, 2013, vol. 193, pp. 309–315. https://doi.org/10.1534/genetics.112.146266
Article CAS PubMed PubMed Central Google Scholar
Zakharov, I.A., Yurchenko, L.V., and Yarovoi, B.F., Cytoduction: an autonomous transfer of cytoplasmic hereditary factors upon yeast cell mating, Genetika (Moscow), 1969, vol. 5, pp. 136–141.
Guillermon, M.A., Recherches sur la germination des spores et la conjugaison chez les Levures, Rev. Genet. Bot., 1905, vol. 509, pp. 337–376.
Murphy, H.A. and Zeyl, C.W., Yeast sex: surprisingly high rates of outcrossing between asci, PLoS One, 2010, vol. 5, no. 5, p. e10461. https://doi.org/10.1371/journal.pone.0010461
Article CAS PubMed PubMed Central Google Scholar
McClure, A.W., Jacobs, K.C., Zyla, T.R., et al., Mating in wild yeast: delayed interest in sex after spore germination, Mol. Biol. Cell., 2018, vol. 29, pp. 3119–3127. https://doi.org/10.1091/mbc.E18-08-0528
Article CAS PubMed PubMed Central Google Scholar
James, A.P., The spectrum of severity of mutant effects: haploid effects in yeast, Genetics, 1959, vol. 44, pp. 1309–1324.
Article CAS PubMed PubMed Central Google Scholar
Inge-Vechtomov, S.G., New genetic strains of yeast Saccharomyces cerevisiae, Vestn. Leningr. Univ., 1963, no. 21, p. 117.
Taxis, C., Keller, P., Kavagiou, Z., et al., Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system, J. Cell Biol., 2005, vol. 171, pp. 627–640. https://doi.org/10.1083/jcb.200507168
Article CAS PubMed PubMed Central Google Scholar
Johnson, L.J., Koufopanou, V., Goddard, M.R., et al., Population genetics of the wild yeast Saccharomyces paradoxus, Genetics, 2004, vol. 166, pp. 43–52. https://doi.org/10.1534/genetics.166.1.43
Article CAS PubMed PubMed Central Google Scholar
Tsai, I.J., Bensasson, D., Burt, A., et al., Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 4957–4962. https://doi.org/10.1073/pnas.0707314105
Ezov, T.K., Chang, S.-L., Frenkel, Z., et al., Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction, Mol. Ecol., 2010, vol. 19, pp. 121–131. https://doi.org/10.1111/j.1365-294X.2009.04436.x
Miller, E.L. and Greig, D., Spore germination determines yeast inbreeding according to fitness in the local environment, Am. Nat., 2015, vol. 185, pp. 291–301. https://doi.org/10.5061/dryad.r0g9m
Nishant, K.T., Wei, W., Mancera, E., et al., The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis, PLoS Genet., 2010, vol. 6, no. 9, p. e1001109. https://doi.org/10.1371/journal.pgen.1001109
Article CAS PubMed PubMed Central Google Scholar
Reuter, M., Bell, G., and Greig, D., Increased outbreeding in yeast in response to dispersal by an insect vector, Curr. Biol., 2007, vol. 17, pp. R81–R83. https://doi.org/10.1016/j.cub.2006.11.059
Article CAS PubMed Google Scholar
Papaioannou, I.A., Dutreux, F., Peltie, F.A., et al., Sex without crossing over in the yeast Saccharomycodes ludwigii, Genome Biol., 2021, vol. 22, p. 303. https://doi.org/10.1186/s13059-021-02521-w
Article CAS PubMed PubMed Central Google Scholar
Miyakawa, I., Nakahara, A., and Ito, K., Morphology of mitochondrial nucleoids, mitochondria, and nuclei during meiosis and sporulation of the yeast Saccharomycodes ludwigii, J. Gen. Appl. Microbiol., 2012, vol. 58, pp. 43–51.
Article CAS PubMed Google Scholar
Miyakawa, I., Matsuo, E., Yagi, R., et al., Isolation of interspore bridges from the budding yeast Saccharomycodes ludwigii, Cytologia, 2020, vol. 85, pp. 307–312. https://doi.org/10.1508/cytologia.85.307
Jay, P., Tezenas, E., Veber, A., et al., Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes, PLoS Biol., 2022, vol. 20, no. 7, p. e3001698. https://doi.org/10.1371/journal.pbio.3001698
Article CAS PubMed PubMed Central Google Scholar
Zakharov, I.A., Heterozygozity maintenance for the lethals in populations reproducing by intratetrad mating, Ekol. Genet., 2009, vol. 7, no. 4, pp. 60–63. https://doi.org/10.17816/ecogen7460-63
Johnson, L.J., Antonovics, J., and Hood, M.E., The evolution of intratetrad mating rates, Evolution, 2005, vol. 59, pp. 2525–2532.
Zakharov, I.A., Intratetrad mating as the driving force behind the formation of sex chromosomes in fungi, Trends Genet. Evol., 2023, vol. 6, no. 1, p. 2522. https://doi.org/10.24294/tge.v6i1.2522
Comments (0)