Sequencing of the Chloroplast Genomes of Different Forms of Zhuk. et Migusch.

Zhukovskii, P.M. and Migushova, E.F., The most highly immune endemic gene pool for developing resistant wheat varieties through distant hybridization, Vestn. S-kh. Nauki, 1969, no. 2, pp. 9–20.

Dorofeev, V.F., Yakubtsiner, M.M., Rudenko, M.I., et al., Pshenitsy mira (Wheats of the World), Brezhnev, D.D., Ed., Leningrad: Kolos, 1976.

Google Scholar 

Navruzbekov, N.A., Towards the origin of Triticum militinae Zhuk. et Migusch., in Botanicheskie i geneticheskie resursy flory Dagestana (Botanical and Genetic Resources of the Dagestan Flora), Makhachkala, 1981, pp. 121–122.

Valdes, B. and Scholz, H., The Euro + Med treatment of Gramineae—a generic synopsis and some new names, Willdenowia, 2006, vol. 36, pp. 657–669.

Google Scholar 

Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultural Flora of the USSR), vol. I: Pshenitsa (The Wheat), Leningrad: Kolos, 1979.

Badaeva, E.D., Filatenko, A.A., and Badaev, N.S., Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique, Theor. Appl. Genet., 1994, vol. 89, pp. 622–628. https://doi.org/10.1007/BF00222457

Article  CAS  PubMed  Google Scholar 

Badaeva, E.D., Boguslavskii, R.L., and Badaev, N.S., Cytogenetic study of grasses: tetraploid wheat species from Zanduri, Genetika (Moscow), 1988, vol. 24, no. 8, pp. 1411–1418.

Google Scholar 

Jakobson, I., Peusha, H.O., Timofejeva, L., and Jarve, K., Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line, Theor. Appl. Genet., 2006, vol. 112, pp. 760–769. https://doi.org/10.1007/s00122-005-0181-2

Article  PubMed  Google Scholar 

Nataraj, V., Vinod, V., Sharma, J.B., Chanwala, J., Mallik, N., and Jha, S.K., Molecular characterization of Triticum militinae derived introgression lines carrying leaf rust resistance, Genet. Resour. Crop Evol., 2018, vol. 65, pp. 787–796. https://doi.org/10.1007/s10722-017-0572-7

Article  CAS  Google Scholar 

Janakova, E., Jakobson, I., Peusha, H.O., et al., Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene, Theor. Appl. Genet., 2019, vol. 132, no. 4, pp. 1061–1072. https://doi.org/10.1007/s00122-018-3259-3

Article  CAS  PubMed  Google Scholar 

Chowdhury, S., Bansal, S., Jha, S.K., Saharan, M.S., Niranjana, M., Raghunandan, K., Choudhary, M.K., Agarwal, P., Mallick, N., and Vinod, V., Characterization and identification of sources of rust resistance in Triticum militinae derivatives, Sci. Rep., 2024, vol. 14, p. 9408. https://doi.org/10.1038/s41598-024-59902-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuluev, A.R., Matniyazov, R.T., Kuluev, B.R., et al., Sequencing and annotation of the chloroplast genome of Triticum militinae—a “natural mutant” of tetraploid wheat Triticum timopheevii Zhuk., Russ. J. Genet., 2024, vol. 60, no. 8, pp. 1130–1133. https://doi.org/10.1134/S1022795424700601

Article  CAS  Google Scholar 

Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheat and Its Relatives), Novosibirsk: Geo, 2012.

Google Scholar 

Shi, C., Hu, N., Huang, H., et al., An improved chloroplast DNA extraction procedure for whole plastid genome sequencing, PLoS One, 2012, vol. 7, no. 2, p. 31468. https://doi.org/10.1371/journal.pone.0031468

Article  CAS  Google Scholar 

Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinlan, A.R. and Hall, I.M., Bedtools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 2010, vol. 26, no. 6, pp. 841–842. https://doi.org/10.1093/bioinformatics/btq033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Handsaker, B., Wysoker, A., et al., The sequence alignment/map format and samtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, P., Xu, C., Chen, H., et al., NOVOWrap: an automated solution for plastid genome assembly and structure standardization, Mol. Ecol. Resour., 2021, vol. 21, no. 6, pp. 2177–2186. https://doi.org/10.1111/1755-0998.13410

Article  PubMed  Google Scholar 

Shi, L., Chen, H., Jiang, M., et al., CPGAVAS2, an integrated plastome sequence annotator and analyzer, Nucleic Acids Res., 2019, vol. 47, pp. W65–W73. https://doi.org/10.1093/nar/gkz345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, S., Poczai, P., Hyvonen, J., et al., Chloroplot: an online program for the versatile plotting of organelle genomes, Front. Genet., 2020, vol. 11, p. 576124. https://doi.org/10.3389/fgene.2020.576124

Article  PubMed  PubMed Central  Google Scholar 

Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780. https://doi.org/10.1093/molbev/mst010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waterhouse, A.M., Procter, J.B., Martin, D.M.A., et al., Jalview version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 2009, vol. 25, no. 9, pp. 1189–1191. https://doi.org/10.1093/bioinformatics/btp033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuluev, A.R., Kuluev, B.R., Mikhaylova, E.V., and Chemeris, A.V., Sequencing and analysis of complete chloroplast genomes of einkorn wheats Triticum sinskajae and Triticum monococcum accession k-20 970, Genet. Resour. Crop. Evol., 2024, vol. 71, pp. 3347–3360. https://doi.org/10.1007/s10722-023-01843-x

Article  CAS  Google Scholar 

Feldman, M. and Levy, A.A., Wheat Evolution and Domestication, Cham: Springer-Verlag, 2023. https://doi.org/10.1007/978-3-031-30175-9

Book  Google Scholar 

Nuzhnaya, T.V., Veselova, S.V., Burkhanova, G.F., and Maksimov, I.V., Primary search for new sources of effective resistance among representatives of the genus Triticum L. against Stagonospora nodorum Berk., Biomics, 2022, vol. 14, no. 3, pp. 227–233. https://doi.org/10.31301/2221-6197.bmcs.2022-17

Article  Google Scholar 

Peusha, Kh.O. and Shnaider (Enno), T.M., Crossability of bread wheat with closely related species, Izv. Arad. Nauk Est. SSR, 1983, vol. 32, no. 4, pp. 241–244.

Peusha, Kh.O., Stephan, U., Hsam, S.L.K., Fel’senstein, F.G., Enno, T.M., and Zeller, F.J., Identification of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.): IV. Breeding lines derived from wide crosses of Russian cultivars with species Triticum timopheevii Zhuk., T. militinae Zhuk. et Migush., T. dicoccum (Schrank.) Schuebl., Aegilops speltoides Tausch, Russ. J. Genet., 1995, vol. 31, no. 2, pp. 181–187.

CAS  Google Scholar 

Kozhakhmetov, K.K., Bastaubaeva, Sh.O., Zhakataeva, A.N., et al., Using wild relatives’ gene pool to improve bread wheat in organic farming, Izdenister Natigeler, 2024, no. 2-1. pp. 158–172. https://doi.org/10.37884/2-1-2024/551

Abugalieva, A.I., Savin, T.V., Kozhahmetov, K.K., and Morgounov, A.I., Registration of wheat germplasm originating from wide crosses with superior agronomic performance and disease resistance, J. Plant Regist., 2021, vol. 15, pp. 206–214. https://doi.org/10.1002/plr2.20105

Article  Google Scholar 

Zhirov, E.G., Wheat genomes: exploration and reorganization, Extended Abstract of Doctoral Dissertation, Kiev, 1989, p. 36.

Davoyan, R.O., Bebyakina, I.V., Davoyan, O.R., et al., Use of synthetic forms in the preservation and exploitation of the gene pool of wild common wheat relatives, Vavilovskii Zh. Genet. Sel., 2012, vol. 16, no. 1, pp. 44–51.

Google Scholar 

Golovnina, K.A., Glushkov, S.A., Blinov, A.G., et al., Molecular phylogeny of genus Triticum L., Plant Syst. Evol., 2007, vol. 264, nos. 3/4, pp. 195–216. https://doi.org/10.1007/s00606-006-0478-x

Article  CAS  Google Scholar 

Badaeva, E.D., Konovalov, F.A., Knüpffer, H., et al., Genetic diversity, distribution and domestication history of the neglected GGAtAt gene pool of wheat, Theor. Appl. Genet., 2021, vol. 135, pp. 755–776. https://doi.org/10.1007/s00122-021-03912-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuluev, A.R., Matniyazov, R.T., Kuluev, B.R., and Chemeris, A.V., Triticum militinae Zhuk. et Migusch. is definitely not a mutant of T. timopheevii Zhuk., as was believed for many years, Biomics, 2023, vol. 15, no. 3, pp. 213–217. https://doi.org/10.31301/2221-6197.bmcs.2023-19

Article  Google Scholar 

Apel’, V.I. and Latypov, A.Z., On the factors of new species emergence under the conditions of Belarus, Genet. Sel. Rast., 1974, vol. 129, pp. 18–21.

Google Scholar 

Apel’, V.I. and Moiseev, V.P., Genetic characteristics of T. militinae v. albimilitinae and its breeding and economic characteristics, Selektsiya i semenovodstvo zernovykh i zernobobovykh kul’tur (Breeding and Seed Production of Grain and Leguminous Crops), Minsk, 1982, issue 89, pp. 18–24.

Szalay, D., Triticum timopheevi Zhuk. with short, close-packed spikes, Acta Agron. Acad. Sci. Hung., 1977, vol. 26, nos. 1—2, pp. 181–187.

Google Scholar 

Eritsyan, A.A., Cytogenetic study of T. timopheevi Zhuk., Tr. Tbilis. Bot. Inst., 1941, vol. 8, pp. 211–272.

Comments (0)

No login
gif