Zhukovskii, P.M. and Migushova, E.F., The most highly immune endemic gene pool for developing resistant wheat varieties through distant hybridization, Vestn. S-kh. Nauki, 1969, no. 2, pp. 9–20.
Dorofeev, V.F., Yakubtsiner, M.M., Rudenko, M.I., et al., Pshenitsy mira (Wheats of the World), Brezhnev, D.D., Ed., Leningrad: Kolos, 1976.
Navruzbekov, N.A., Towards the origin of Triticum militinae Zhuk. et Migusch., in Botanicheskie i geneticheskie resursy flory Dagestana (Botanical and Genetic Resources of the Dagestan Flora), Makhachkala, 1981, pp. 121–122.
Valdes, B. and Scholz, H., The Euro + Med treatment of Gramineae—a generic synopsis and some new names, Willdenowia, 2006, vol. 36, pp. 657–669.
Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultural Flora of the USSR), vol. I: Pshenitsa (The Wheat), Leningrad: Kolos, 1979.
Badaeva, E.D., Filatenko, A.A., and Badaev, N.S., Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique, Theor. Appl. Genet., 1994, vol. 89, pp. 622–628. https://doi.org/10.1007/BF00222457
Article CAS PubMed Google Scholar
Badaeva, E.D., Boguslavskii, R.L., and Badaev, N.S., Cytogenetic study of grasses: tetraploid wheat species from Zanduri, Genetika (Moscow), 1988, vol. 24, no. 8, pp. 1411–1418.
Jakobson, I., Peusha, H.O., Timofejeva, L., and Jarve, K., Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line, Theor. Appl. Genet., 2006, vol. 112, pp. 760–769. https://doi.org/10.1007/s00122-005-0181-2
Nataraj, V., Vinod, V., Sharma, J.B., Chanwala, J., Mallik, N., and Jha, S.K., Molecular characterization of Triticum militinae derived introgression lines carrying leaf rust resistance, Genet. Resour. Crop Evol., 2018, vol. 65, pp. 787–796. https://doi.org/10.1007/s10722-017-0572-7
Janakova, E., Jakobson, I., Peusha, H.O., et al., Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene, Theor. Appl. Genet., 2019, vol. 132, no. 4, pp. 1061–1072. https://doi.org/10.1007/s00122-018-3259-3
Article CAS PubMed Google Scholar
Chowdhury, S., Bansal, S., Jha, S.K., Saharan, M.S., Niranjana, M., Raghunandan, K., Choudhary, M.K., Agarwal, P., Mallick, N., and Vinod, V., Characterization and identification of sources of rust resistance in Triticum militinae derivatives, Sci. Rep., 2024, vol. 14, p. 9408. https://doi.org/10.1038/s41598-024-59902-x
Article CAS PubMed PubMed Central Google Scholar
Kuluev, A.R., Matniyazov, R.T., Kuluev, B.R., et al., Sequencing and annotation of the chloroplast genome of Triticum militinae—a “natural mutant” of tetraploid wheat Triticum timopheevii Zhuk., Russ. J. Genet., 2024, vol. 60, no. 8, pp. 1130–1133. https://doi.org/10.1134/S1022795424700601
Goncharov, N.P., Sravnitel’naya genetika pshenits i ikh sorodichei (Comparative Genetics of Wheat and Its Relatives), Novosibirsk: Geo, 2012.
Shi, C., Hu, N., Huang, H., et al., An improved chloroplast DNA extraction procedure for whole plastid genome sequencing, PLoS One, 2012, vol. 7, no. 2, p. 31468. https://doi.org/10.1371/journal.pone.0031468
Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article CAS PubMed PubMed Central Google Scholar
Quinlan, A.R. and Hall, I.M., Bedtools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 2010, vol. 26, no. 6, pp. 841–842. https://doi.org/10.1093/bioinformatics/btq033
Article CAS PubMed PubMed Central Google Scholar
Li, H., Handsaker, B., Wysoker, A., et al., The sequence alignment/map format and samtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Article CAS PubMed PubMed Central Google Scholar
Wu, P., Xu, C., Chen, H., et al., NOVOWrap: an automated solution for plastid genome assembly and structure standardization, Mol. Ecol. Resour., 2021, vol. 21, no. 6, pp. 2177–2186. https://doi.org/10.1111/1755-0998.13410
Shi, L., Chen, H., Jiang, M., et al., CPGAVAS2, an integrated plastome sequence annotator and analyzer, Nucleic Acids Res., 2019, vol. 47, pp. W65–W73. https://doi.org/10.1093/nar/gkz345
Article CAS PubMed PubMed Central Google Scholar
Zheng, S., Poczai, P., Hyvonen, J., et al., Chloroplot: an online program for the versatile plotting of organelle genomes, Front. Genet., 2020, vol. 11, p. 576124. https://doi.org/10.3389/fgene.2020.576124
Article PubMed PubMed Central Google Scholar
Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780. https://doi.org/10.1093/molbev/mst010
Article CAS PubMed PubMed Central Google Scholar
Waterhouse, A.M., Procter, J.B., Martin, D.M.A., et al., Jalview version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 2009, vol. 25, no. 9, pp. 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
Article CAS PubMed PubMed Central Google Scholar
Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120
Article CAS PubMed PubMed Central Google Scholar
Kuluev, A.R., Kuluev, B.R., Mikhaylova, E.V., and Chemeris, A.V., Sequencing and analysis of complete chloroplast genomes of einkorn wheats Triticum sinskajae and Triticum monococcum accession k-20 970, Genet. Resour. Crop. Evol., 2024, vol. 71, pp. 3347–3360. https://doi.org/10.1007/s10722-023-01843-x
Feldman, M. and Levy, A.A., Wheat Evolution and Domestication, Cham: Springer-Verlag, 2023. https://doi.org/10.1007/978-3-031-30175-9
Nuzhnaya, T.V., Veselova, S.V., Burkhanova, G.F., and Maksimov, I.V., Primary search for new sources of effective resistance among representatives of the genus Triticum L. against Stagonospora nodorum Berk., Biomics, 2022, vol. 14, no. 3, pp. 227–233. https://doi.org/10.31301/2221-6197.bmcs.2022-17
Peusha, Kh.O. and Shnaider (Enno), T.M., Crossability of bread wheat with closely related species, Izv. Arad. Nauk Est. SSR, 1983, vol. 32, no. 4, pp. 241–244.
Peusha, Kh.O., Stephan, U., Hsam, S.L.K., Fel’senstein, F.G., Enno, T.M., and Zeller, F.J., Identification of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.): IV. Breeding lines derived from wide crosses of Russian cultivars with species Triticum timopheevii Zhuk., T. militinae Zhuk. et Migush., T. dicoccum (Schrank.) Schuebl., Aegilops speltoides Tausch, Russ. J. Genet., 1995, vol. 31, no. 2, pp. 181–187.
Kozhakhmetov, K.K., Bastaubaeva, Sh.O., Zhakataeva, A.N., et al., Using wild relatives’ gene pool to improve bread wheat in organic farming, Izdenister Natigeler, 2024, no. 2-1. pp. 158–172. https://doi.org/10.37884/2-1-2024/551
Abugalieva, A.I., Savin, T.V., Kozhahmetov, K.K., and Morgounov, A.I., Registration of wheat germplasm originating from wide crosses with superior agronomic performance and disease resistance, J. Plant Regist., 2021, vol. 15, pp. 206–214. https://doi.org/10.1002/plr2.20105
Zhirov, E.G., Wheat genomes: exploration and reorganization, Extended Abstract of Doctoral Dissertation, Kiev, 1989, p. 36.
Davoyan, R.O., Bebyakina, I.V., Davoyan, O.R., et al., Use of synthetic forms in the preservation and exploitation of the gene pool of wild common wheat relatives, Vavilovskii Zh. Genet. Sel., 2012, vol. 16, no. 1, pp. 44–51.
Golovnina, K.A., Glushkov, S.A., Blinov, A.G., et al., Molecular phylogeny of genus Triticum L., Plant Syst. Evol., 2007, vol. 264, nos. 3/4, pp. 195–216. https://doi.org/10.1007/s00606-006-0478-x
Badaeva, E.D., Konovalov, F.A., Knüpffer, H., et al., Genetic diversity, distribution and domestication history of the neglected GGAtAt gene pool of wheat, Theor. Appl. Genet., 2021, vol. 135, pp. 755–776. https://doi.org/10.1007/s00122-021-03912-0
Article CAS PubMed PubMed Central Google Scholar
Kuluev, A.R., Matniyazov, R.T., Kuluev, B.R., and Chemeris, A.V., Triticum militinae Zhuk. et Migusch. is definitely not a mutant of T. timopheevii Zhuk., as was believed for many years, Biomics, 2023, vol. 15, no. 3, pp. 213–217. https://doi.org/10.31301/2221-6197.bmcs.2023-19
Apel’, V.I. and Latypov, A.Z., On the factors of new species emergence under the conditions of Belarus, Genet. Sel. Rast., 1974, vol. 129, pp. 18–21.
Apel’, V.I. and Moiseev, V.P., Genetic characteristics of T. militinae v. albimilitinae and its breeding and economic characteristics, Selektsiya i semenovodstvo zernovykh i zernobobovykh kul’tur (Breeding and Seed Production of Grain and Leguminous Crops), Minsk, 1982, issue 89, pp. 18–24.
Szalay, D., Triticum timopheevi Zhuk. with short, close-packed spikes, Acta Agron. Acad. Sci. Hung., 1977, vol. 26, nos. 1—2, pp. 181–187.
Eritsyan, A.A., Cytogenetic study of T. timopheevi Zhuk., Tr. Tbilis. Bot. Inst., 1941, vol. 8, pp. 211–272.
Comments (0)