Kidokoro, S., Shinozaki, K., and Yamaguchi-Shinozaki, K., Transcriptional regulatory network of plant cold-stress responses, Trends Plant Sci., 2022, vol. 27, no. 9, pp. 922–935. https://doi.org/10.1016/j.tplants.2022.01.008
Article CAS PubMed Google Scholar
Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Article CAS PubMed Google Scholar
Bulgakov, V.P., Fialko, A.V., and Yugay, Y.A., Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation, Plant Physiol. Biochem., 2024, vol. 216, p. 109096. https://doi.org/10.1016/j.plaphy.2024.109096
Article CAS PubMed Google Scholar
Fukumoto, L.R. and Mazza, G., Assessing antioxidant and prooxidant activities of phenolic compounds, J. Agric. Food Chem., 2000, vol. 48, no. 8, pp. 3597–3604. https://doi.org/10.1021/jf000220w
Article CAS PubMed Google Scholar
Neill, S.O. and Gould, K.S., Anthocyanins in leaves: light attenuators or antioxidants?, Funct. Plant Biol., 2003, vol. 30, pp. 865–873. https://doi.org/10.1071/FP03118
Article CAS PubMed Google Scholar
Ahmed, N.U., Park, J.-I., Jung, H.-J., et al., Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa, Gene, 2014, vol. 550, pp. 46–55. https://doi.org/10.1016/j.gene.2014.08.013
Article CAS PubMed Google Scholar
Naing, A.H. and Kim, C.K., Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses, Physiol. Plant., 2021, vol. 172, no. 3, pp. 1711–1723. https://doi.org/10.1111/ppl.13373
Article CAS PubMed Google Scholar
Xu, Z., Mahmood, K., and Rothstein, S.J., ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis, Plant Cell Physiol., 2017, vol. 58, no. 8, pp. 1364–1377. https://doi.org/10.1093/pcp/pcx073
Article CAS PubMed Google Scholar
Dar, N.A., Mir, M.A., Mir, J.I., et al., MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.), Mol. Biol. Rep., 2022, vol. 49, no. 6, pp. 5353–5364. https://doi.org/10.1007/s11033-021-07077-3
Article CAS PubMed Google Scholar
Pietrini, F., Iannelli, M.A., and Massacci, A., Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis, Plant Cell Environ., 2002, vol. 25, pp. 1251–1259. https://doi.org/10.1046/j.1365-3040.2002.00917.x
Li, Z., Vickrey, T.L., McNally, M.G., Sato, S.J., Clemente, T.E., and Mower, J.P., Assessing anthocyanin biosynthesis in Solanaceae as a model pathway for secondary metabolism, Genes (Basel), 2019, vol. 10, no. 8, p. 559. https://doi.org/10.3390/genes10080559
Article CAS PubMed PubMed Central Google Scholar
Xu, W., Dubos, C., and Lepiniec, L., Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes, Trends Plant Sci., 2015, vol. 20, no. 3, pp. 176–185. https://doi.org/10.1016/j.tplants.2014.12.001
Article CAS PubMed Google Scholar
Lloyd, A., Brockman, A., Aguirre, L., et al., Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation, Plant Cell Physiol., 2017, vol. 58, pp. 1431–1441. https://doi.org/10.1093/pcp/pcx075
Article CAS PubMed PubMed Central Google Scholar
Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M., Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings, Plant J., 2008, vol. 53, no. 5, pp. 814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
Article CAS PubMed Google Scholar
Hichri, I., Barrieu, F., Bogs, J., et al., Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway, J. Exp. Bot., 2011, vol. 62, pp. 2465–2483. https://doi.org/10.1093/jxb/erq442
Article CAS PubMed Google Scholar
Maier, A., Schrader, A., Kokkelink, L., et al., Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis, Plant J., 2013, vol. 74, pp. 638–651. https://doi.org/10.1111/tpj.12153
Article CAS PubMed Google Scholar
An, J.P., Qu, F.J., Yao, J.F., et al., The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple, Hortic. Res., 2017, vol. 4, p. 17056. https://doi.org/10.1038/hortres.2017.23
Article CAS PubMed PubMed Central Google Scholar
Kim, S., Hwang, G., Lee, S., Zhu, J.Y., Paik, I., Nguyen, T.T., Kim, J., and Oh, E., High ambient temperature represses anthocyanin biosynthesis through degradation of HY5, Front. Plant Sci., 2017, vol. 8, p. 1787. https://doi.org/10.3389/fpls.2017.01787
Article PubMed PubMed Central Google Scholar
Liu, B., Wang, X.Y., Cao, Y., et al., Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens, Plant J., 2020, vol. 103, no. 6, pp. 2279–2300. https://doi.org/10.1111/tpj.14899
Article CAS PubMed Google Scholar
Li, L., Ban, Z.-J., Li, X.-H., Wu, M.Y., Wang, A.L., Jiang, YQ., and Jiang, Y.H., Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.), PLoS One, 2012, vol. 7, p. e46070. https://doi.org/10.1371/journal.pone.0046070
Article CAS PubMed PubMed Central Google Scholar
Gaiotti, F., Pastore, C., Filippetti, I., et al., Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.), Sci. Rep., 2018, vol. 8, no. 1, p. 8719. https://doi.org/10.1038/s41598-018-26921-4
Article CAS PubMed PubMed Central Google Scholar
He, Q., Ren, Y., Zhao, W., et al., Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head Chinese cabbage (Brassica rapa L.), Genes (Basel), 2020, vol. 11, no. 1, p. 81. https://doi.org/10.3390/genes11010081
Article CAS PubMed PubMed Central Google Scholar
Zhang, Q., Zhai, J., Shao, L., Lin, W., and Peng, C., Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter, Front. Plant Sci., 2019, vol. 10, p. 1049. https://doi.org/10.3389/fpls.2019.01049
Article PubMed PubMed Central Google Scholar
Li, P., Li, Y.J., Zhang, F.J., et al., The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation, Plant J., 2017, vol. 89, no. 1, pp. 85–103. https://doi.org/10.1111/tpj.13324
Article CAS PubMed Google Scholar
Meng, X., Yin, B., Feng, H.L., et al., Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress, Biol. Plant., 2014, vol. 58, pp. 121–130. https://doi.org/10.1007/s10535-013-0376-3
Liu, H., Able, A.J., and Able, J.A., Priming crops for the future: rewiring stress memory, Trends Plant Sci., 2022, vol. 27, no. 7, pp. 699–716. https://doi.org/10.1016/j.tplants.2021.11.015
Article CAS PubMed Google Scholar
Tengkun, N., Dongdong, W., Xiaohui, M., Yue, C., and Qin, C., Analysis of key genes involved in potato anthocyanin biosynthesis based on genomics and transcriptomics data, Front. Plant Sci., 2019, vol. 10, p. 603. https://doi.org/10.3389/fpls.2019.00603
Comments (0)