Al-Waith, H.K., Al-Anbari, N.N., and Mohamed, T.R., Relationship of the DQA1 gene polymorphism with productive performance in Holstein cattle, Plant Arch., 2018, vol. 18, pp. 2636–2640. https://doi.org/10.5555/20203001636
Kim, H., Caetano-Anolles, K., Seo, M., et al., Prediction of genes related to positive selection using whole-genome resequencing in three commercial pig breeds, Genomics Inf., 2015, vol. 13, pp. 137–145. https://doi.org/10.5808/GI.2015.13.4.137
Vandre, R.K., Gowane, G.R., Sharma, A.K., and Tomar, S.S., Immune responsive role of MHC class II DQA1 gene in livestock, Livest. Res. Int., 2014, vol. 2, pp. 1–7.
Park, Y.H., Joo, Y.S., Park, J.Y., et al., Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows, J. Vet. Sci., 2004, vol. 5, no. 1, pp. 29–39. https://doi.org/10.4142/jvs.2004.5.1.29
Vandre, R.K., Sharma, A.K., Gowane, G.R., et al., Trend of association of BoLA-DQA1 alleles with FMDV vaccine elicited immune response in crossbred cattle, Indian J. Anim. Sci., 2014, vol. 84, no. 6, pp. 619–623. https://doi.org/10.56093/ijans.v84i6.41569
Cronin, M.A., Renecker, L., Pierson, B.J., and Patton, J.C., Genetic variation in domestic reindeer and wild caribou in Alaska, Anim. Genet., 1995, vol. 26, no. 6, pp. 427–434. https://doi.org/10.1111/j.1365-2052.1995.tb02695.x
Article CAS PubMed Google Scholar
Kennedy, L.J., Modrell, A., Groves, P., et al., Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds, Int. J. Immunogenet., 2011, vol. 38, no. 2, pp. 109–119. https://doi.org/10.1111/j.1744-313X.2010.00973.x
Article CAS PubMed Google Scholar
Lukacs, M., Nymo, I.H., Madslien, K., et al., Functional immune diversity in reindeer reveals a high Arctic population at risk, Front. Ecol. Evol., 2023, vol. 10, p. 1058674. https://doi.org/10.3389/fevo.2022.1058674
Muuttoranta, K., Holand, Ø., Røed, K.H., et al., Genetic variation in meat production related traits in reindeer (Rangifer t. tarandus), Rangifer, 2014, vol. 34, no. 1, pp. 21–36. https://doi.org/10.7557/2.34.1.2753
Nikolaev, S.V., Matyukov, V.S., and Filatov, A.V., Changes in the microsatellite profile in an experimental herd of Nenets reindeer breed, Mezhdunar. Vestn. Vet., 2023, no. 3, pp. 275–283. https://doi.org/10.52419/issn2072-2419.2023.3.275
Semina, M.T., Kashtanov, S.N., Babayan, O.V., et al., Analysis of the genetic diversity and population structure of the Nenets native breed of reindeer based on microsatellite markers, Russ. J. Genet., 2022, vol. 58, no. 8, pp. 975–987. https://doi.org/10.1134/S1022795422080063
Kharzinova, V.R., Dotsev, A.V., Solovieva, A.D., Shimit, L.D.-O., Kochkarev, A.P., Reyer, H., and Zinovieva, N.A., Genome-wide SNP analysis reveals the genetic diversity and population structure of the domestic reindeer population (Rangifer tarandus) inhabiting the indigenous Tofalar lands of southern Siberia, Diversity, 2022, vol. 14, no. 11, p. 900. https://doi.org/10.3390/d14110900
Kholodova, M.V., Baranova, A.I., Mizin, I.A., et al., A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia, Biol. Bull., 2019, vol. 46, pp. 555–561. https://doi.org/10.1134/S1062359019060074
Kurbakov, K.A., Konorov, E.A., Semina, M.T., and Stolpovsky, Y.A., Distribution of alleles of PRNP gene associated with chronic wasting disease in wild and domesticated reindeer Rangifer tarandus in Russia, Russ. J. Genet., 2022, vol. 58, no. 2, pp. 158–163. https://doi.org/10.1134/S1022795422020107
Keane, O.M., Dodds, K.G., Crawford, A.M., and McEwan, J.C., Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines, Physiol. Genomics, 2007, vol. 30, no. 3, pp. 253–261.
Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinf., 2012, vol. 13, no. 1, pp. 1–11. https://doi.org/10.1186/1471-2105-13-134
Kluesner, M.G., Nedveck, D.A., Lahr, W.S., et al., EditR: a method to quantify base editing from Sanger sequencing, CRISPR J., 2018, vol. 1, no. 3, pp. 239–250. https://doi.org/10.1089/crispr.2018.0014
Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340
Article CAS PubMed PubMed Central Google Scholar
Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6. pp. 1547–1549. https://doi.org/10.1093/molbev/msy096
Article CAS PubMed PubMed Central Google Scholar
Lê, S., Josse, J., and Husson, F., FactoMineR: an R package for multivariate analysis, J. Stat. Software, 2008, vol. 25, pp. 1–18. https://doi.org/10.18637/jss.v025.i01
Svishcheva, G., Babayan, O., Sipko, T., et al., Genetic differentiation between coexisting wild and domestic reindeer (Rangifer tarandus L. 1758) in Northern Eurasia, Genet. Resour., 2022, vol. 3, no. 6, pp. 1–14. https://doi.org/10.46265/genresj.UYML5006
Comments (0)