Gene Variability in Wild and Domestic Reindeer () of the Asian Part of Russia

Al-Waith, H.K., Al-Anbari, N.N., and Mohamed, T.R., Relationship of the DQA1 gene polymorphism with productive performance in Holstein cattle, Plant Arch., 2018, vol. 18, pp. 2636–2640. https://doi.org/10.5555/20203001636

Article  Google Scholar 

Kim, H., Caetano-Anolles, K., Seo, M., et al., Prediction of genes related to positive selection using whole-genome resequencing in three commercial pig breeds, Genomics Inf., 2015, vol. 13, pp. 137–145. https://doi.org/10.5808/GI.2015.13.4.137

Article  Google Scholar 

Vandre, R.K., Gowane, G.R., Sharma, A.K., and Tomar, S.S., Immune responsive role of MHC class II DQA1 gene in livestock, Livest. Res. Int., 2014, vol. 2, pp. 1–7.

Google Scholar 

Park, Y.H., Joo, Y.S., Park, J.Y., et al., Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows, J. Vet. Sci., 2004, vol. 5, no. 1, pp. 29–39. https://doi.org/10.4142/jvs.2004.5.1.29

Article  PubMed  Google Scholar 

Vandre, R.K., Sharma, A.K., Gowane, G.R., et al., Trend of association of BoLA-DQA1 alleles with FMDV vaccine elicited immune response in crossbred cattle, Indian J. Anim. Sci., 2014, vol. 84, no. 6, pp. 619–623. https://doi.org/10.56093/ijans.v84i6.41569

Article  CAS  Google Scholar 

Cronin, M.A., Renecker, L., Pierson, B.J., and Patton, J.C., Genetic variation in domestic reindeer and wild caribou in Alaska, Anim. Genet., 1995, vol. 26, no. 6, pp. 427–434. https://doi.org/10.1111/j.1365-2052.1995.tb02695.x

Article  CAS  PubMed  Google Scholar 

Kennedy, L.J., Modrell, A., Groves, P., et al., Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds, Int. J. Immunogenet., 2011, vol. 38, no. 2, pp. 109–119. https://doi.org/10.1111/j.1744-313X.2010.00973.x

Article  CAS  PubMed  Google Scholar 

Lukacs, M., Nymo, I.H., Madslien, K., et al., Functional immune diversity in reindeer reveals a high Arctic population at risk, Front. Ecol. Evol., 2023, vol. 10, p. 1058674. https://doi.org/10.3389/fevo.2022.1058674

Article  Google Scholar 

Muuttoranta, K., Holand, Ø., Røed, K.H., et al., Genetic variation in meat production related traits in reindeer (Rangifer t. tarandus), Rangifer, 2014, vol. 34, no. 1, pp. 21–36. https://doi.org/10.7557/2.34.1.2753

Article  Google Scholar 

Nikolaev, S.V., Matyukov, V.S., and Filatov, A.V., Changes in the microsatellite profile in an experimental herd of Nenets reindeer breed, Mezhdunar. Vestn. Vet., 2023, no. 3, pp. 275–283. https://doi.org/10.52419/issn2072-2419.2023.3.275

Semina, M.T., Kashtanov, S.N., Babayan, O.V., et al., Analysis of the genetic diversity and population structure of the Nenets native breed of reindeer based on microsatellite markers, Russ. J. Genet., 2022, vol. 58, no. 8, pp. 975–987. https://doi.org/10.1134/S1022795422080063

Article  CAS  Google Scholar 

Kharzinova, V.R., Dotsev, A.V., Solovieva, A.D., Shimit, L.D.-O., Kochkarev, A.P., Reyer, H., and Zinovieva, N.A., Genome-wide SNP analysis reveals the genetic diversity and population structure of the domestic reindeer population (Rangifer tarandus) inhabiting the indigenous Tofalar lands of southern Siberia, Diversity, 2022, vol. 14, no. 11, p. 900. https://doi.org/10.3390/d14110900

Article  Google Scholar 

Kholodova, M.V., Baranova, A.I., Mizin, I.A., et al., A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia, Biol. Bull., 2019, vol. 46, pp. 555–561. https://doi.org/10.1134/S1062359019060074

Article  Google Scholar 

Kurbakov, K.A., Konorov, E.A., Semina, M.T., and Stolpovsky, Y.A., Distribution of alleles of PRNP gene associated with chronic wasting disease in wild and domesticated reindeer Rangifer tarandus in Russia, Russ. J. Genet., 2022, vol. 58, no. 2, pp. 158–163. https://doi.org/10.1134/S1022795422020107

Article  CAS  Google Scholar 

Keane, O.M., Dodds, K.G., Crawford, A.M., and McEwan, J.C., Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines, Physiol. Genomics, 2007, vol. 30, no. 3, pp. 253–261.

CAS  PubMed  Google Scholar 

Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinf., 2012, vol. 13, no. 1, pp. 1–11. https://doi.org/10.1186/1471-2105-13-134

Article  CAS  Google Scholar 

Kluesner, M.G., Nedveck, D.A., Lahr, W.S., et al., EditR: a method to quantify base editing from Sanger sequencing, CRISPR J., 2018, vol. 1, no. 3, pp. 239–250. https://doi.org/10.1089/crispr.2018.0014

Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6. pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lê, S., Josse, J., and Husson, F., FactoMineR: an R package for multivariate analysis, J. Stat. Software, 2008, vol. 25, pp. 1–18. https://doi.org/10.18637/jss.v025.i01

Article  Google Scholar 

Svishcheva, G., Babayan, O., Sipko, T., et al., Genetic differentiation between coexisting wild and domestic reindeer (Rangifer tarandus L. 1758) in Northern Eurasia, Genet. Resour., 2022, vol. 3, no. 6, pp. 1–14. https://doi.org/10.46265/genresj.UYML5006

Article  Google Scholar 

Comments (0)

No login
gif