The Genetic Study of a Museum Anthropological Sample from the Urban Burial of Old Ryazan of the 11th–13th Centuries

Mongayt, A.L., Staraya Ryazan (Old Ryazan), vol. IV of Materialy i issledovaniya po arkheologii drevnerusskikh gorodov (Materials and Research on the Archaeology of Rus’ Cities), Moscow: Akad. Nauk SSSR, 1955.

Darkevich, V.P. and Borisevich, G.V., Drevnyaya stolitsa Ryazanskoi zemli: XI–XIII vv. (The Ancient Capital of the Ryazan Land: 11th–13th Centuries), Moscow: Krug, 1995.

Selivanov, A.V., O raskopkakh v staroy Ryazani i v Novo-Ol’govskom gorodke (On Excavations in Old Ryazan and in Novo-Olgovsky Gorodok), Ryazan’, 1890.

Andreeva, T.V., Dobrovolskaya, M.V., Sedov, V.V., et al., People from the stone sarcophagus no. 11 of the Yuriev Monastery: a genetic history based on mitochondrial genomes, Kratk. Soobshch. Inst. Arkheol., 2023, no. 270. pp. 418–437. https://doi.org/10.25681/IARAS.0130-2620.270.418-437

Andreeva, T.V., Malyarchuk, A.B., Grigorenko, A.P., et al., Archaeogenetic analysis of an individual from a burial of the ancient Yaroslavl Kremlin, Kratk. Soob-shch. Inst. Arkheol., 2021, no. 265, pp. 294–308. https://doi.org/10.25681/IARAS.0130-2620.265.294-308

Andreeva, T.V., Manakhov, A.D., Gusev, F.E., et al., Genomic analysis of a novel neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Paleolithic populations, Sci. Rep., 2022, vol. 12, p. 3016. https://doi.org/10.1038/s41598-022-16164-9

Article  CAS  Google Scholar 

Gansauge, M.T., Gerber, T., Glocke, I., et al., Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase, Nucleic Acids Res., 2017, vol. 45, no. 10, p. e79. https://doi.org/10.1093/nar/gkx033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schubert, M., Lindgreen, S., and Orlando, L., AdapterRemoval v2: rapid adapter trimming, identification, and read merging, BMC Res. Notes, 2016, vol. 12, no. 9, p. 88. https://doi.org/10.1186/s13104-016-1900-2

Article  Google Scholar 

Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows–Wheeler transform, Bioinformatics, 2009, vol. 25, no. 14, pp. 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jónsson, H., Ginolhac, A., Schubert, M., et al., MapDamage 2.0: fast approximate Bayesian estimates of ancient DNA damage parameters, Bioinformatics, 2013, vol. 29, no. 13, pp. 1682–1684. https://doi.org/10.1093/bioinformatics/btt193

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anastasiadou, K., Silva, M., Booth, T., et al., Detection of chromosomal aneuploidy in ancient genomes, Commun. Biol., 2024, vol. 7, no. 1, p. 14. https://doi.org/10.1038/s42003-023-05642-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A., et al., HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing, Nucleic Acids Res., 2016, vol. 44, pp. 58–63. https://doi.org/10.1093/nar/gkw233

Article  CAS  Google Scholar 

GenBank. www.ncbi.nlm.nih.gov/genbank/. Accessed May 15, 2024.

BLAST. https://blast.ncbi. nlm.nih.gov. Accessed May 15, 2024.

AmtDB. https://amtdb.org/. Accessed May 15, 2024.

YFull-MTree 1.02. https://www.yfull.com/mtree/. Accessed May 15, 2024.

Mallick, S., Micco, A., Mah, M., et al., The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes, Sci. Data, 2024, vol. 11, no. 1, p. 182. https://doi.org/10.1038/s41597-024-03031-7

Article  PubMed  PubMed Central  Google Scholar 

http://eltsov.org. Accessed May 15, 2024.

Takahashi, K. and Nei, M., Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used, Mol. Biol. Evol., 2000, vol. 17, no. 8, pp. 1251–1258. https://doi.org/10.1093/oxfordjournals.molbev.a026408

Article  CAS  PubMed  Google Scholar 

http://www.phylotree.org. Accessed May 15, 2024.

Robinson, J.T., Thorvaldsdottir, H., Winckler, W., et al., Integrative Genomics Viewer, Nat. Biotechnol., 2011, vol. 29, no. 1, pp. 24–26. https://doi.org/10.1038/nbt.1754

Article  CAS  PubMed  PubMed Central  Google Scholar 

GnomAD v 4.1.0. https://gnomad.broadinstitute.org. Accessed May 15, 2024.

Soares, P., Ermini, L., Thomson, N., et al., Correcting for purifying selection: an improved human mitochondrial molecular clock, Am. J. Hum. Genet., 2009, vol. 84, pp. 740–759. https://doi.org/10.1016/j.ajhg.2009.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Fanti, S., Barbieri, C., Sarno, S., Sevini, F., Vianello, D., Tamm, E., Metspalu, E., van Oven, M., Hübner, A., Sazzini, M., Franceschi, C., Pettener, D., and Luiselli, D., Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals paleolithic signatures from European glacial refugia, PLoS One, 2015, vol. 10, no. 12, p. e0144391. https://doi.org/10.1371/journal.pone.0144391

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Carballa, A., Olivieri, A., Behar, D.M., Achilli, A., Torroni, A., and Salas, A., Genetic continuity in the Franco-Cantabrian region: new clues from autochthonous mitogenomes, PLoS One, 2012, vol. 7, no. 3, p. e32851. https://doi.org/10.1371/journal.pone.0032851

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardoso, S., Valverde, L., Alfonso-Sánchez, M.A., Palencia-Madrid, L., Elcoroaristizabal, X., Algorta, J., Catarino, S., Arteta, D., Herrera, R. J., Zarrabeitia, M.T., Peña, J. A., and de Pancorbo, M. M., The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques, PLoS One, 2013, vol. 8, no. 7, p. e67835. https://doi.org/10.1371/journal.pone.0067835

Article  CAS  PubMed  PubMed Central  Google Scholar 

García, O., Fregel, R., Larruga, J., et al., Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge, Heredity, 2011, vol. 106, pp. 37–45. https://doi.org/10.1038/hdy.2010.47

Article  PubMed  Google Scholar 

García, Ó., Alonso, S., Huber, N., Bodner, M., and Parson, W., Forensically relevant phylogeographic evaluation of mitogenome variation in the Basque Country, Forensic Sci. Int. Genet., 2020, vol. 46, p. 102260. https://doi.org/10.1016/j.fsigen.2020.102260

Article  CAS  PubMed  Google Scholar 

Cardoso, S., Valverde, L., Alfonso-Sánchez, M.A., Palencia-Madrid, L., Elcoroaristizabal, X., Algorta, J., Catarino, S., Arteta, D., Herrera, R.J., Zarrabeitia, M.T., Peña, J.A., and de Pancorbo, M.M., The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques, PLoS One, 2013, vol. 8, no. 7, p. e67835. https://doi.org/10.1371/journal.pone.0067835

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olalde, I., Brace, S., Allentoft, M., et al., The Beaker phenomenon and the genomic transformation of northwest Europe, Nature, 2018, vol. 555, pp. 190–196. https://doi.org/10.1038/nature25738

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gnecchi-Ruscone, G.A., Szécsényi-Nagy, A., Koncz, I., et al., Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites, Cell, 2022, vol. 185, no. 8, pp. 1402–1413. https://doi.org/10.1016/j.cell.2022.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazaridis, I., Alpaslan-Roodenberg, S., Acar, A., et al., The genetic history of the Southern Arc: a bridge between West Asia and Europe, Science, 2022, vol. 377, no. 6609, p. eabm4247. https://doi.org/10.1126/science.abm4247

Likhachev, D.S., Velikoye naslediye (The Great Legacy), Izbrannye raboty v trekh tomakh (Selected Works in Three Volumes), Leningrad: Khudozhestvennaya Literatura, 1987, vol. 2, pp. 154–227.

Google Scholar 

Comments (0)

No login
gif