Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., and Klein, A.M., How much does agriculture depend on pollinators? Lessons from long-term trends in crop production, Ann. Bot., 2009, vol. 103, no. 9, pp. 1579–1588. https://doi.org/10.1093/aob/mcp076
Article PubMed PubMed Central Google Scholar
Christmann, S., Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas?, Restor. Ecol., 2019, vol. 27, no. 4, pp. 720–725. https://doi.org/10.1111/rec.12950
Patel, V., Pauli, N., Biggs, E., et al., Why bees are critical for achieving sustainable development, Ambio, 2021, vol. 50, no. 1, pp. 49–59. https://doi.org/10.1007/s13280-020-01333-9
Dangles, O. and Casas, J., Ecosystem services provided by insects for achieving sustainable development goals, Ecosyst. Serv., 2019, vol. 35, pp. 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002
Kohno, H. and Kubo, T., Genetics in the honey bee: achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors: 10, Insects, 2019, vol. 10, no. 10, p. 348. https://doi.org/10.3390/insects10100348
Article PubMed PubMed Central Google Scholar
Wilson, E.O. and Hölldobler, B., Eusociality: origin and consequences, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 38, pp. 13 367–13 371. https://doi.org/10.1073/pnas.0505858102
da Silva, J., Life history and the transitions to eusociality in the Hymenoptera, Front. Ecol. Evol., 2021, vol. 9, p. 20. https://doi.org/10.3389/fevo.2021.727124
Ashby, R., Forêt, S., Searle, I., and Maleszka, R., MicroRNAs in honey bee caste determination, Sci. Rep., 2016, vol. 6, p. 18794. https://doi.org/10.1038/srep18794
Article CAS PubMed PubMed Central Google Scholar
Alaux, C., Sinha, S., Hasadsri, L., et al., Honey bee aggression supports a link between gene regulation and behavioral evolution, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 36, pp. 15 400–15 405. https://doi.org/10.1073/pnas.0907043106
Greenberg, J.K., Xia, J., Zhou, X., et al., Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome: 6, Genes Brain Behav., 2012, vol. 11, no. 6, pp. 660–670. https://doi.org/10.1111/j.1601-183X.2012.00782.x
Article CAS PubMed Google Scholar
Eyer, M., Dainat, B., Neumann, P., and Dietemann, V., Social regulation of ageing by young workers in the honey bee, Apis mellifera, Exp. Gerontol., 2017, vol. 87, part A, pp. 84–91. https://doi.org/10.1016/j.exger.2016.11.006
de Paula Junior, D.E., de Oliveira, M.T., and Bruscadin, J.J., Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera, Insect Mol. Biol., 2021, vol. 30, no. 1, pp. 42–56. https://doi.org/10.1111/imb.12671
Wang, M., Xiao, Y., Li, Y., Wang, X., Qi, S., Wang, Y., Zhao, L., Wang, K., Peng, W., Luo, G.Z., Xue, X., Jia, G., and Wu, L., RNA m6A modification functions in larval development and caste differentiation in honeybee (Apis mellifera): 1, Cell Rep., 2021, vol. 34, no. 1, p. 108580. https://doi.org/10.1016/j.celrep.2020.108580
Article CAS PubMed Google Scholar
Yokoi, K., Wakamiya, T., and Bono, H., Meta-analysis of the public RNA-Seq data of the western honeybee Apis mellifera to construct reference transcriptome data, Insects, 2022, vol. 13, no. 10, p. 931. https://doi.org/10.3390/insects13100931
Article PubMed PubMed Central Google Scholar
Brenman-Suttner, D. and Zayed, A., An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects, Curr. Opin. Insect Sci., 2024, vol. 65, p. 101231. https://doi.org/10.1016/j.cois.2024.101231
Smutin, D., Taldaev, A., Lebedev, E., and Adonin, L., Shotgun metagenomics reveals minor micro“bee”omes diversity defining differences between larvae and pupae brood combs: 2, Int. J. Mol. Sci., 2024, vol. 25, no. 2, p. 741. https://doi.org/10.3390/ijms25020741
Article CAS PubMed PubMed Central Google Scholar
Robinson, S.D., Schendel, V., and Schroeder, C.I., Intra-colony venom diversity contributes to maintaining eusociality in a cooperatively breeding ant, BMC Biol., 2023, vol. 21, no. 1, p. 5. https://doi.org/10.1186/s12915-022-01507-9
Article PubMed PubMed Central Google Scholar
Kreider, J.J. and Pen, I., The evolution of eusociality: kin selection theory, division of labour models, and evo-devo explanations, EcoEvoRxiv, 2022. https://doi.org/10.32942/osf.io/c9p2e
Mikhailova, A.A., Rinke, S., and Harrison, M.C., Genomic signatures of eusocial evolution in insects, Curr. Opin. Insect Sci., 2024, vol. 61, p. 101136. https://doi.org/10.1016/j.cois.2023.101136
Gregory, T.R., Nicol, J.A., and Tamm, H., Eukaryotic genome size databases, Nucleic Acids Res., 2007, vol. 35, pp. D332–D338. https://doi.org/10.1093/nar/gkl828
Article CAS PubMed Google Scholar
Petersen, M., Armisen, D., and Gibbs, R.A., Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects: 1, BMC Evol. Biol., 2019, vol. 19, no. 1, p. 11. https://doi.org/10.1186/s12862-018-1324-9
Article PubMed PubMed Central Google Scholar
Jiang, F., Yang, M., Guo, W., et al., Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria, PLoS One, 2012, vol. 7, no. 7, p. e40532. https://doi.org/10.1371/journal.pone.0040532
Article CAS PubMed PubMed Central Google Scholar
Gilbert, C., Peccoud, J., and Cordaux, R., Transposable elements and the evolution of insects, Annu. Rev. Entomol., 2021, vol. 66, pp. 355–372. https://doi.org/10.1146/annurev-ento-070720-074650
Article CAS PubMed Google Scholar
Feschotte, C., Transposable elements and the evolution of regulatory networks: 5, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397–405. https://doi.org/10.1038/nrg2337
Article CAS PubMed PubMed Central Google Scholar
Bourque, G., Burns, K.H., Gehring, M., et al., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19, no. 1, p. 199. https://doi.org/10.1186/s13059-018-1577-z
Article CAS PubMed PubMed Central Google Scholar
Carareto, C.M.A., Hernandez, E.H., and Vieira, C., Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species, Gene, 2014, vol. 537, no. 1, pp. 93–99. https://doi.org/10.1016/j.gene.2013.11.080
Article CAS PubMed Google Scholar
Wu, C. and Lu, J., Diversification of transposable elements in Arthropods and its impact on genome evolution, Genes, 2019, vol. 10, no. 5, p. 338. https://doi.org/10.3390/genes10050338
Article CAS PubMed PubMed Central Google Scholar
Ellison, C.E. and Bachtrog, D., Dosage compensation via transposable element mediated rewiring of a regulatory network, Science, 2013, vol. 342, no. 6160, pp. 846–850. https://doi.org/10.1126/science.1239552
Article CAS PubMed PubMed Central Google Scholar
Pardue, M.L., Rashkova, S., Casacuberta, E., et al., Two retrotransposons maintain telomeres in Drosophila, Chromosome Res., 2005, vol. 13, no. 5, pp. 443–453. https://doi.org/10.1007/s10577-005-0993-6
Article CAS PubMed PubMed Central Google Scholar
Jangam, D., Feschotte, C., and Betrán, E., Transposable element domestication as an adaptation to evolutionary conflicts: 11, Trends Genet., 2017, vol. 33, no. 11, pp. 817–831. https://doi.org/10.1016/j.tig.2017.07.011
Comments (0)