Diversity and Evolution of the Repetitive Element Repertoire in Two Subspecies of Honey Bee

Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., and Klein, A.M., How much does agriculture depend on pollinators? Lessons from long-term trends in crop production, Ann. Bot., 2009, vol. 103, no. 9, pp. 1579–1588. https://doi.org/10.1093/aob/mcp076

Article  PubMed  PubMed Central  Google Scholar 

Christmann, S., Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas?, Restor. Ecol., 2019, vol. 27, no. 4, pp. 720–725. https://doi.org/10.1111/rec.12950

Article  Google Scholar 

Patel, V., Pauli, N., Biggs, E., et al., Why bees are critical for achieving sustainable development, Ambio, 2021, vol. 50, no. 1, pp. 49–59. https://doi.org/10.1007/s13280-020-01333-9

Article  PubMed  Google Scholar 

Dangles, O. and Casas, J., Ecosystem services provided by insects for achieving sustainable development goals, Ecosyst. Serv., 2019, vol. 35, pp. 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002

Article  Google Scholar 

Kohno, H. and Kubo, T., Genetics in the honey bee: achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors: 10, Insects, 2019, vol. 10, no. 10, p. 348. https://doi.org/10.3390/insects10100348

Article  PubMed  PubMed Central  Google Scholar 

Wilson, E.O. and Hölldobler, B., Eusociality: origin and consequences, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 38, pp. 13 367–13 371. https://doi.org/10.1073/pnas.0505858102

Article  CAS  Google Scholar 

da Silva, J., Life history and the transitions to eusociality in the Hymenoptera, Front. Ecol. Evol., 2021, vol. 9, p. 20. https://doi.org/10.3389/fevo.2021.727124

Article  Google Scholar 

Ashby, R., Forêt, S., Searle, I., and Maleszka, R., MicroRNAs in honey bee caste determination, Sci. Rep., 2016, vol. 6, p. 18794. https://doi.org/10.1038/srep18794

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alaux, C., Sinha, S., Hasadsri, L., et al., Honey bee aggression supports a link between gene regulation and behavioral evolution, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 36, pp. 15 400–15 405. https://doi.org/10.1073/pnas.0907043106

Article  Google Scholar 

Greenberg, J.K., Xia, J., Zhou, X., et al., Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome: 6, Genes Brain Behav., 2012, vol. 11, no. 6, pp. 660–670. https://doi.org/10.1111/j.1601-183X.2012.00782.x

Article  CAS  PubMed  Google Scholar 

Eyer, M., Dainat, B., Neumann, P., and Dietemann, V., Social regulation of ageing by young workers in the honey bee, Apis mellifera, Exp. Gerontol., 2017, vol. 87, part A, pp. 84–91. https://doi.org/10.1016/j.exger.2016.11.006

de Paula Junior, D.E., de Oliveira, M.T., and Bruscadin, J.J., Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera, Insect Mol. Biol., 2021, vol. 30, no. 1, pp. 42–56. https://doi.org/10.1111/imb.12671

Article  CAS  Google Scholar 

Wang, M., Xiao, Y., Li, Y., Wang, X., Qi, S., Wang, Y., Zhao, L., Wang, K., Peng, W., Luo, G.Z., Xue, X., Jia, G., and Wu, L., RNA m6A modification functions in larval development and caste differentiation in honeybee (Apis mellifera): 1, Cell Rep., 2021, vol. 34, no. 1, p. 108580. https://doi.org/10.1016/j.celrep.2020.108580

Article  CAS  PubMed  Google Scholar 

Yokoi, K., Wakamiya, T., and Bono, H., Meta-analysis of the public RNA-Seq data of the western honeybee Apis mellifera to construct reference transcriptome data, Insects, 2022, vol. 13, no. 10, p. 931. https://doi.org/10.3390/insects13100931

Article  PubMed  PubMed Central  Google Scholar 

Brenman-Suttner, D. and Zayed, A., An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects, Curr. Opin. Insect Sci., 2024, vol. 65, p. 101231. https://doi.org/10.1016/j.cois.2024.101231

Article  PubMed  Google Scholar 

Smutin, D., Taldaev, A., Lebedev, E., and Adonin, L., Shotgun metagenomics reveals minor micro“bee”omes diversity defining differences between larvae and pupae brood combs: 2, Int. J. Mol. Sci., 2024, vol. 25, no. 2, p. 741. https://doi.org/10.3390/ijms25020741

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson, S.D., Schendel, V., and Schroeder, C.I., Intra-colony venom diversity contributes to maintaining eusociality in a cooperatively breeding ant, BMC Biol., 2023, vol. 21, no. 1, p. 5. https://doi.org/10.1186/s12915-022-01507-9

Article  PubMed  PubMed Central  Google Scholar 

Kreider, J.J. and Pen, I., The evolution of eusociality: kin selection theory, division of labour models, and evo-devo explanations, EcoEvoRxiv, 2022. https://doi.org/10.32942/osf.io/c9p2e

Mikhailova, A.A., Rinke, S., and Harrison, M.C., Genomic signatures of eusocial evolution in insects, Curr. Opin. Insect Sci., 2024, vol. 61, p. 101136. https://doi.org/10.1016/j.cois.2023.101136

Article  PubMed  Google Scholar 

Gregory, T.R., Nicol, J.A., and Tamm, H., Eukaryotic genome size databases, Nucleic Acids Res., 2007, vol. 35, pp. D332–D338. https://doi.org/10.1093/nar/gkl828

Article  CAS  PubMed  Google Scholar 

Petersen, M., Armisen, D., and Gibbs, R.A., Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects: 1, BMC Evol. Biol., 2019, vol. 19, no. 1, p. 11. https://doi.org/10.1186/s12862-018-1324-9

Article  PubMed  PubMed Central  Google Scholar 

Jiang, F., Yang, M., Guo, W., et al., Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria, PLoS One, 2012, vol. 7, no. 7, p. e40532. https://doi.org/10.1371/journal.pone.0040532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert, C., Peccoud, J., and Cordaux, R., Transposable elements and the evolution of insects, Annu. Rev. Entomol., 2021, vol. 66, pp. 355–372. https://doi.org/10.1146/annurev-ento-070720-074650

Article  CAS  PubMed  Google Scholar 

Feschotte, C., Transposable elements and the evolution of regulatory networks: 5, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397–405. https://doi.org/10.1038/nrg2337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourque, G., Burns, K.H., Gehring, M., et al., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19, no. 1, p. 199. https://doi.org/10.1186/s13059-018-1577-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carareto, C.M.A., Hernandez, E.H., and Vieira, C., Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species, Gene, 2014, vol. 537, no. 1, pp. 93–99. https://doi.org/10.1016/j.gene.2013.11.080

Article  CAS  PubMed  Google Scholar 

Wu, C. and Lu, J., Diversification of transposable elements in Arthropods and its impact on genome evolution, Genes, 2019, vol. 10, no. 5, p. 338. https://doi.org/10.3390/genes10050338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellison, C.E. and Bachtrog, D., Dosage compensation via transposable element mediated rewiring of a regulatory network, Science, 2013, vol. 342, no. 6160, pp. 846–850. https://doi.org/10.1126/science.1239552

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardue, M.L., Rashkova, S., Casacuberta, E., et al., Two retrotransposons maintain telomeres in Drosophila, Chromosome Res., 2005, vol. 13, no. 5, pp. 443–453. https://doi.org/10.1007/s10577-005-0993-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jangam, D., Feschotte, C., and Betrán, E., Transposable element domestication as an adaptation to evolutionary conflicts: 11, Trends Genet., 2017, vol. 33, no. 11, pp. 817–831. https://doi.org/10.1016/j.tig.2017.07.011

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif