Kucher, A.N., Koroleva, Yu.A., and Nazarenko, M.S., Epidemiologic basis for the comorbidity of aortic aneurysm and atherosclerosis, Byull. Sib. Med., 2025, vol. 24, no. 1, pp. 180–192. https://doi.org/10.20538/1682-0363-2025-1-180-192
Isselbacher, E.M., Preventza, O., Hamilton Black, J. III, et al., ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines, Circulation, 2022, vol. 146, no. 24, pp. e334–e482. https://doi.org/10.1161/CIR.0000000000001106
Gyftopoulos, A., Ziganshin, B.A., Elefteriades, J.A., and Ochoa Chaar, C.I., Comparison of genes associated with thoracic and abdominal aortic aneurysms, Aorta (Stamford, CT), 2023, vol. 11, no. 3, pp. 125–134. https://doi.org/10.1055/s-0043-57266
van der Laan, P.A., Reardon, C.A., and Getz, G.S., Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators, Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, no. 1, pp. 12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0
Dalager, S., Paaske, W.P., Kristensen, I.B., et al., Artery-related differences in atherosclerosis expression: implications for atherogenesis and dynamics in intima-media thickness, Stroke, 2007, vol. 38, no. 10, pp. 2698–2705. https://doi.org/10.1161/STROKEAHA.107.486480
Achneck, H., Modi, B., Shaw, C., et al., Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis, Chest, 2005, vol. 128, no. 3, pp. 1580–1586. https://doi.org/10.1378/chest.128.3.1580
Grewal, N., Dolmaci, O., Jansen, E., et al., Are acute type A aortic dissections atherosclerotic?, Front. Cardiovasc. Med., 2023, vol. 9, p. 1032755. https://doi.org/10.3389/fcvm.2022.1032755
Article PubMed PubMed Central Google Scholar
Zafar, M.A., Ziganshin, B.A., Li, Y., et al., “Big Data” analyses underlie clinical discoveries at the aortic institute, Yale J. Biol. Med., 2023, vol. 96, no. 3, pp. 427–440. https://doi.org/10.59249/LNDZ2964
Article PubMed PubMed Central Google Scholar
Stejskal, V., Karalko, M., and Krbal, L., Histopathological findings of diseased ascending aortae with clinicopathological correlation—a single-centre study of 160 cases, Pathol. Res. Pract., 2023, vol. 246, p. 154526. https://doi.org/10.1016/j.prp.2023.154526
Vapnik, J.S., Kim, J.B., Isselbacher, E.M., et al., Characteristics and outcomes of ascending versus descending thoracic aortic aneurysms, Am. J. Cardiol., 2016, vol. 117, no. 10, pp. 1683–1690. https://doi.org/10.1016/j.amjcard.2016.02.048
Ahmad, M.M., Kiani, I.A., Ammar, K.A., et al., Ascending aortic aneurysm is an inherited disease: a contemporary literature review based on Hill’s criteria of specificity, strength of association, and biological coherence, Cardiol. Rev., 2017, vol. 25, no. 6, pp. 268–278. https://doi.org/10.1097/CRD.0000000000000146
Kucher, A.N., Koroleva, I.A., and Nazarenko, M.S., Exploring disparities of atherosclerosis comorbidity with aortic aneurysm, Biomedicines, 2025, vol. 13, no. 3, p. 593. https://doi.org/10.3390/biomedicines13030593
Article CAS PubMed PubMed Central Google Scholar
Collins, M.J., Dev, V., Strauss, B.H., et al., Variation in the histopathological features of patients with ascending aortic aneurysms: a study of 111 surgically excised cases, J. Clin. Pathol., 2008, vol. 61, no. 4, pp. 519–523. https://doi.org/10.1136/jcp.2006.046250
Article CAS PubMed Google Scholar
Dolmaci, O.B., Klautz, R.J.M., Poelmann, R.E., et al., Thoracic aortic atherosclerosis in patients with a bicuspid aortic valve; a case—control study, BMC Cardiovasc. Disord., 2023, vol. 23, no. 1, p. 363. https://doi.org/10.1186/s12872-023-03396-4
Article PubMed PubMed Central Google Scholar
Cheung, C., Bernardo, A.S., Trotter, M.W., et al., Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility, Nat. Biotechnol., 2012, vol. 30, no. 2, pp. 165–173. https://doi.org/10.1038/nbt.2107
Article CAS PubMed PubMed Central Google Scholar
MacFarlane, E.G., Parker, S.J. Shin, J.Y., et al., Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys—Dietz syndrome, J. Clin. Invest., 2019, vol. 129, no. 2, pp. 659–675. https://doi.org/10.1172/JCI123547
Article PubMed PubMed Central Google Scholar
Li, Y., LeMaire, S.A., and Shen, Y.H., Molecular and cellular dynamics of aortic aneurysms revealed by single-cell transcriptomics, Arterioscler. Thromb. Vasc. Biol., 2021, vol. 41, no. 11, pp. 2671–2680. https://doi.org/10.1161/ATVBAHA.121.315852
Article CAS PubMed PubMed Central Google Scholar
Yu, L., Zhang, J., Gao, A., et al., An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation, Signal Transduct. Target Ther., 2022, vol. 7, no. 1, p. 125. https://doi.org/10.1038/s41392-022-00943-x
Article CAS PubMed PubMed Central Google Scholar
Liu, X.W., Wang, P., Zhang, L., Zhu, Y., Zhai, J.Y., Wang, C.N., Li, J., and Xiao, J., Single-cell RNA sequencing and ATAC sequencing identify novel biomarkers for bicuspid aortic valve-associated thoracic aortic aneurysm, Front. Cardiovasc. Med., 2024, vol. 11, p. 1265378. https://doi.org/10.3389/fcvm.2024.1265378
Article CAS PubMed PubMed Central Google Scholar
Weng, Y., Lou, J., Bao, Y., et al., Single-cell RNA sequencing technology revealed the pivotal role of fibroblast heterogeneity in angiotensin II-induced abdominal aortic aneurysms, DNA Cell Biol., 2022, vol. 41, no. 5, pp. 498–520. https://doi.org/10.1089/dna.2021.092.3
Article CAS PubMed Google Scholar
Gadson, P.F., Jr., Dalton, M.L., Patterson, E., et al., Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: regulation of c-myb and alpha1 (I) procollagen genes, Exp. Cell. Res., 1997, vol. 230, no. 2, pp. 169–180. https://doi.org/10.1006/excr.1996.3398
Article CAS PubMed Google Scholar
Gao, Y.K., Guo, R.J., Xu, X., Huang, X.F., Song, Y., Zhang, D.D., Chen, N., Wang, X.W., Liang, C.X., Kong, P., and Han, M., A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease, PLoS One, 2022, vol. 17, no. 3, p. e0265132. https://doi.org/10.1371/journal.pone.0265132
Article CAS PubMed PubMed Central Google Scholar
Hu, Y., Cai, Z., and He, B., Smooth muscle heterogeneity and plasticity in health and aortic aneurysmal disease, Int. J. Mol. Sci., 2023, vol. 24, no. 14, p. 11701. https://doi.org/10.3390/ijms241411701
Article CAS PubMed PubMed Central Google Scholar
Taghizadeh, H., Mechanobiology of the arterial tissue from the aortic root to the diaphragm, Med. Eng. Phys., 2021, vol. 96, pp. 64–70. https://doi.org/10.1016/j.medengphy.2021.09.001
Falk, E., Pathogenesis of atherosclerosis, J. Am. Coll. Cardiol., 2006, vol. 47, suppl. 8, pp. C7–C12. https://doi.org/10.1016/j.jacc.2005.09.068
Article CAS PubMed Google Scholar
Cho, M.J., Lee, M.R., and Park, J.G., Aortic aneurysms: current pathogenesis and therapeutic targets, Exp. Mol. Med., 2023, vol. 55, no. 12, pp. 2519–2530. https://doi.org/10.1038/s12276-023-01130-w
Article CAS PubMed PubMed Central Google Scholar
Stejskal, V., Karalko, M., Smolak, P., et al., Medial degeneration and atherosclerosis show discrete variance around the circumference of ascending aorta aneurysms, Virchow’s Arch., 2022, vol. 481, no. 5, pp. 731–738. https://doi.org/10.1007/s00428-022-03397-2
Bennett, M.R., Sinha, S., and Owens, G.K., Vascular smooth muscle cells in atherosclerosis, Circ. Res., 2016, vol. 118, no. 4, pp. 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361
Comments (0)