Abramov, A.V., Meschersky, I.G., and Rozhnov, V.V., On the taxonomic status of the harvest mouse Micromys minutus (Rodentia: Muridae) from Vietnam, Zootaxa, 2009, vol. 2199, no. 1, pp. 58–68.
Chen, Z., Pei, X., Song, J., et al., Systematics and evolutionary history of the genus Micromys (Mammalia: Rodentia: Muridae), Mamm. Biol., 2023, vol. 103, pp. 389–403.
Pei, X., Qu, W., Zhang, M., et al., Discussion on the taxonomy and distribution of the Micromys Dehne, 1841 in China, Acta Theriol. Sin., 2021, vol. 41, no. 6, pp. 631–640.
Handbook of the Mammals of the World, vol. 7: Rodets II, Wilson, D.E., Lacher, T.E., Jr., and Mittermeier, R.A. Eds., Barcelona: Lynx Edicions, 2017, рр. 788−800.
Hebert, P.D., Cywinska, A., Ball, S.L., et al., Biological identifications through DNA barcodes, Proc. Biol. Sci., 2003, vol. 270, no. 1512, pp. 313–321.
CAS PubMed PubMed Central Google Scholar
Sun, Y., Chen, J., Liang, X., et al., Sequence comparison of the mitochondrial genomes of Plesionika species (Caridea: Pandalidae), gene rearrangement and phylogenetic relationships of Caridea, Peer J., 2024, vol. 12, p. e17314.
PubMed PubMed Central Google Scholar
Pagès, M., Fabre P.H., Chaval, Y., et al., Molecular phylogeny of South-East Asian arboreal murine rodents, Zool. Scr., 2016, vol. 45, no. 4, pp. 349–364.
Zhang Dezhi, She Huishang, Wang Shangyu, et al., Phylogenetic conflict between species tree and maternally inherited gene trees in a clade of Emberiza buntings (Aves: Emberizidae), Syst. Biol., 2024, vol. 73, no. 2, pp. 279–289.
Cai, H., Wang, Q.Q., Zhao, X.X., et al., Sequencing and analysis of the complete mitochondrial genome of Micromys erythrotis from China and its phylogenetic analysis, Mitochondrial DNA, Part B, 2021, vol. 6, no. 5, pp. 1617–1620.
Jing, J., Song, X., Yan, C., et al., Phylogenetic analyses of the harvest mouse, Micromys minutus (Rodentia: Muridae) based on the complete mitogenome sequences, Biochem. Syst. Ecol., 2015, vol. 62, pp. 121–127.
Wei, F.W., Taxonomy and Distribution of Mammals in China, Beijing: Science Press, 2022.
Gray, M.W., Origin and evolution of mitochondrial DNA, Annu. Rev. Cell Biol., 1989, vol. 5, pp. 25–50.
Zhong, H.M., Zhang, H.H., Sha, W.L., et al., Complete mitochondrial genome of the red fox (Vuples vuples) and phylogenetic analysis with other canid species, Zool. Res., 2020, vol. 31, no. 2, pp. 122–130.
Petrova, T., Bondareva, O., Bodrov, S., et al., The complete mitochondrial genome of Dendrogale murina (Tupaiidae) and phylogeny of Scandentia, Genes, 2023, vol. 14, no. 3, p. 624.
CAS PubMed PubMed Central Google Scholar
Hassan, M.A., Tan, Z., Shen, R., et al., Comparative mitochondrial genome analysis of three leafhopper species of the genus Abrus Dai and Zhang (Hemiptera: Cicadellidae: Deltocephalinae) from China with phylogenetic implication, BMC Genomics, 2023, vol. 24, p. 714.
CAS PubMed PubMed Central Google Scholar
Meganathan, P.R., Pagan, H.J.T., McCulloch, E.S., et al., Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera, Gene, 2012, vol. 492, no. 1, pp. 121–129.
Skorupski, J., Characterisation of the complete mitochondrial genome of critically endangered Mustela lutreola (Carnivora: Mustelidae) and its phylogenetic and conservation implications, Genes, 2022, vol. 13, no. 1, p. 125.
CAS PubMed PubMed Central Google Scholar
Yasuda, S.P., Vogel, K., Tsuchiya, S.H., et al., Phylogeographic patterning of mtDNA in the widely distributed harvest mouse (Micromys minutus) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene, Can. J. Zool., 2005, vol. 83, no. 11, pp. 1411–1420.
Jenkins, C.N. and Joppa, L., Expansion of the global terrestrial protected area system, Biol. Conserv., 2009, vol. 142, no. 10, pp. 2166–2174.
Pimm, S.L., Jenkins, C.N., Abell, R., et al., The biodiversity of species and their rates of extinction, distribution, and protection, Science, 2014, vol. 344, no. 6187, p. 1246752.
Bernt, M., Donath, A., Jühling, F., et al., MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. Phylogenet. Evol., 2013, vol. 69, no. 2, pp. 313–319.
Tillich, M., Lehwark, P., Pellizzer, T., et al., GeSeq-versatile and accurate annotation of organelle genomes, Nucleic Acids Res., 2017, vol. 45, no. 1, pp. 6–11.
Lowe, T.M. and Chan, P.P., tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes, Nucleic Acids Res., 2016, vol. 44, no. W1, pp. 54–57.
Grant, J.R., Enns, E., Marinier, E., et al., Proksee: in-depth characterization and visualization of bacterial genomes, Nucleic Acids Res., 2023, vol. 51, no. 1, pp. 484–492.
Tamura, K., Peterson, D., Peterson, N., et al., M-EGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739.
CAS PubMed PubMed Central Google Scholar
Julio, R., Albert, F.M., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299–3302.
Zhang, D., Gao, F., Jakovlić, I., et al., PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies, Mol. Ecol. Res., 2020, vol. 20, no. 1, pp. 348–355.
Xiang, C.Y., Gao, F., Jakovlić, I., et al., Using PhyloSuite for molecular phylogeny and tree-based analyses, IMeta, 2023, vol. 2, no. 1, p. e87.
CAS PubMed PubMed Central Google Scholar
Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780.
CAS PubMed PubMed Central Google Scholar
Talavera, G., Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst. Biol., 2007, vol. 56, no. 4, pp. 564–577.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587–589.
CAS PubMed PubMed Central Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. B-iol., 2012, vol. 61, no. 3, pp. 539–542.
Ojala, D., Montoya, J., and Attardi, G., tRNA punctuation model of RNA processing in human mitochondria, Nature, 1981, vol. 290, no. 5806, pp. 470–474.
Qu, C., Zhu Y., Jiang, C., et al., Whole mitochondrial genome and phylogeny analysis of Anomala corpulenta, Biotechnol. Bull., 2023, vol. 39, no. 2, pp. 263–273.
Sharp, P.M. and Li, W.H., The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res., 1987, vol. 15, no. 3, pp. 1281–1295.
CAS PubMed PubMed Central Google Scholar
LaBella, A.L., Opulente, D.A., Steenwyk, J.L., et al., Variation and selection on codon usage bias across an entire subphylum, PLoS Genet., 2019, vol. 17, no. 9, p. e1008304.
Chakraborty, S., Uddin, A., Mazumder, T.H., et al., Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents, Mitochondrion, 2018, vol. 42, pp. 64–76.
Orešič, M. and Shalloway, D., Specific correlations between relative synonymous codon usage and protein secondary structure, J. Mol. Biol., 1998, vol. 281, no. 1, pp. 31–48.
Tang, D., Wei, F., Quan, C., et al., Codon usage bias and evolution analysis in the mitochondrial genome of Mesona chinensis Benth, Acta Physiol. Plant., 2022, vol. 44, p. 118.
Qiao, Y.G., Zhang, X.R., Li, Z., et al., Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC, BMC Genomics, 2022, vol. 23, no. 1, p. 664.
CAS PubMed PubMed Central Google Scholar
Pazos, F. and Valencia, A., Protein co-evolution, co-adaptation and interactions, EMBO J., 2008, vol. 27, no. 20, pp. 2648–2655.
CAS PubMed PubMed Central Google Scholar
Benson, G., Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 1999, vol. 27, no. 2, pp. 573–580.
CAS PubMed PubMed Central Google Scholar
Gao, H. and Kong, J., Distribution characteristics and biological function of tandem repeat sequences in the genomes of different organisms, Zool. Res., 2005, vol. 26, no. 5, pp. 555–564.
Datta, R.R. and Rister, J., The power of the (imperfect) palindrome: sequence-specific roles of palindromic motifs in gene regulation, BioEssays, 2022, vol. 44, no. 4, p. e2100191.
Comments (0)