Different Expression of Three Genes under Simultaneous Biotic and Abiotic Stresses in the Root of Wheat

Ahmadi, M., Mirakhorli, N., Erginbas-Orakci, G., et al., Interactions among cereal cyst nematode Heterodera filipjevi, dryland crown rot Fusarium culmorum and drought on grain yield components and disease severity in bread wheat, Can. J. Plant Pathol., 2022, vol. 44, no. 3, pp. 415–431. https://doi.org/10.1080/07060661.2021.2013947

Article  CAS  Google Scholar 

Chen, X., Li, C., Wang, H., and Guo, Z., WRKY transcription factors: evolution, binding, and action, Phytopathol. Res., 2019, vol. 1, pp. 1–15. https://doi.org/10.1186/s42483-019-0022-x

Article  CAS  Google Scholar 

Huang, R., Liu, D., Huang, M., Ma, J., Li, Z., Li, M., and Sui, S., CpWRKY71, a WRKY transcription factor gene of wintersweet (Chimonanthus praecox), promotes flowering and leaf senescence in Arabidopsis, Int. J. Mol. Sci., 2019, vol. 20, no. 21, p. 5325, p. 5325. https://doi.org/10.3390/ijms20215325

Singh, A., Singh, P.K., Sharma, A.K., et al., Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus cajan L.), Plants, 2019, vol. 8, no. 7, p. 214. https://doi.org/10.3390/plants8070214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sikora, R.A., Coyne, D., Hallmann, J., and Timper, P., Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture, Cambridge, UK: CABI, 2018, рр. 163–221.

Google Scholar 

Nicol, J.M., Bolat, N., Erginbas, G., et al., Adapted spring and winter wheat with resistance against multiple soilborne pathogens (cereal nematodes—Heterodera filipjevi and Pratylenchus spp. and crown rot—Fusarium culmorum) targeted for rainfed wheat production systems, Sixth Australasian Soilborne Diseases Symposium, 2010, p. 69.

Ning, P., Liu, C., Kang, J., and Lv, J., Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit conditions, Peer J., 2017, vol. 5, p. e3232. https://doi.org/10.7717/peerj.3232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassan, G., Al-Assas, K., and Abou Al-Fadil, T., Interactions between Heterodera avenae and Fusarium culmorum on yield components of wheat, nematode reproduction, and crown rot severity, Neotropical, 2012, vol. 42, pp. 260–266.

Google Scholar 

Nicol, J.M., Important nematode pests of cereals, Bread Wheat: Improvement and Production, Curtis, B.C., Rajaram, S., and Gómez, M., Eds., FAO Plant Production and Protection Series, Rome, 2002, pp. 345–366.

Google Scholar 

van Hulten, M., Pelser, M., van Loon, L.C., et al., Costs and benefits of priming for defense in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 14, pp. 5602–5607. https://doi.org/10.1073/pnas.0510213103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jha, P.K., Vijay, A., Sahu, A., and Ashraf, M.Z., Comprehensive gene expression meta-analysis, and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders, Sci. Rep., 2016, vol. 6, pp. 1–13. https://doi.org/10.1038/srep37099

Article  CAS  Google Scholar 

Erginbas-Orakci, G., Poole, G., Nicol, J.M., et al., Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat, J. Plant Dis. Prot., 2016, vol. 123, pp. 19–27. https://doi.org/10.1007/s41348-016-0001-8

Article  Google Scholar 

Kong, L., Wu, D., Huang, W., et al., Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis, BMC Genomics, 2015, vol. 16. p. 801. https://doi.org/10.1186/s12864-015-2037-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yockteng, R., Almeida, A.M., Yee, S., Andre, T., Hill, C., and Specht, C.D., A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses, Appl. Plant Sci., 2013, vol. 1, no. 12, p. 1300070. https://doi.org/10.3732/apps.1300070

Article  Google Scholar 

Rao, X., Huang, X., Zhou, Z., and Lin, X., An improvement of the 2–ΔΔCT method for quantitative real-time polymerase chain reaction data analysis, Biostat., Bioinf., Biomath., 2013, vol. 3, no. 3, pp. 71–85.

Google Scholar 

Aebi, H., Catalase, Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1974, pp. 673–680. https://doi.org/10.1016/b978-0-12-091302-2.50032-3

Lin, C.C. and Kao, C.H., NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings, Plant Soil, 1999, vol. 216, pp. 147–153. https://doi.org/10.1023/A:1004714506156

Article  CAS  Google Scholar 

Ahuja, I., De Vos, R.C., Bones, A.M., and Hall, R.D., Plant molecular stress responses face climate change, Trends Plant Sci., 2010, vol. 15, no. 12, pp. 664–674. https://doi.org/10.1016/j.tplants.2010.08.002

Article  CAS  PubMed  Google Scholar 

Bakshi, M. and Oelmüller, R., WRKY transcription factors: jack of many trades in plants, Plant Signaling Behav., 2014, vol. 9, no. 2, p. e27700. https://doi.org/10.4161/psb.27700

Article  CAS  Google Scholar 

Rushton, D.L., Tripathi, P., Rabara, R.C., et al., WRKY transcription factors: key components in abscisic acid signaling, Plant Biotechnol. J., 2012, vol. 10, pp. 2–11. https://doi.org/10.1111/j.1467-7652.2011.00634.x

Article  CAS  PubMed  Google Scholar 

Brand, L.H., Fischer, N.M., Harter, K., et al., Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays, Nucleic Acids Res., 2013, vol. 41, pp. 9764–9778. https://doi.org/10.1093/nar/gkt732

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wittkopp, P.J. and Kalay, G., Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence, Nat. Rev. Genet., 2011, vol. 13 no. 1, pp. 59–69. https://doi.org/10.1038/nrg3095

Article  CAS  PubMed  Google Scholar 

Jones, J.D. and Dangl, J.L., The plant immune system, Nature, 2006, vol. 444, pp. 323–329. https://doi.org/10.1038/nature05286

Shimono, M., Sugano, S., and Nakayama, A., Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance, Plant Cell, 2007, vol. 9, no. 6, pp. 2064–2076. https://doi.org/10.1105/tpc.106.046250

Article  CAS  Google Scholar 

Xiao, J., Cheng, H., Li, X., et al., Rice WRKY13 regulates cross-talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements, Plant Physiol., 2013, vol. 163, no. 4, pp. 1868–1882. https://doi.org/10.1104/pp.113.226019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, M., Kim, C.Y., Lee, J., et al., OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice, Mol. Cells, 2014, vol. 37, no.7, pp. 532–539. https://doi.org/10.14348/molcells.2014.0128

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Etten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E., Two classes of plant antibiotics: phytoalexins versus “phytoanticipins,” Plant Cell, 1994, vol. 6, no. 9, pp. 1191–1192. https://doi.org/10.1105/tpc.6.9.1191

Article  CAS  PubMed  Google Scholar 

Kage, U., Yogendra, and K.N. Kushalappa, A.C., TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike, Sci. Rep., 2017, vol. 7, p. 42596. https://doi.org/10.1038/srep42596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grunewald, W., De Smet, I., Lewis, D.R., et al., Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavanol biosynthesis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 5, pp. 1554–1559. https://doi.org/10.1073/pnas.1121134109

Article  PubMed  PubMed Central  Google Scholar 

Grunewald, W., Karimi, M., Wieczorek, K., et al., A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes, Plant Physiol., 2008, vol. 148, pp. 358–368. https://doi.org/10.1104/pp.108.119131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J., Wang, L., Yan, Y., et al., GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton, Plant Cell Rep., 2021, vol. 40, no. 11, pp. 2135–2150. https://doi.org/10.1007/s00299-020-02590-4

Article  CAS  PubMed  Google Scholar 

Sun, J., Hu, W., Zhou, R., et al., The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants, Plant Cell Rep., 2014, vol. 34, no. 1, pp. 23–35. https://doi.org/10.1007/s00299-014-1684-6

Article  CAS  PubMed  Google Scholar 

Ahammed, G.J., Li, X., Yang, Y., et al., Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2–mediated stomatal closure, Environ. Exp. Bot., 2020, vol. 171, p. 103960. https://doi.org/10.1016/j.envexpbot.2019.103960

Article  Google Scholar 

Mauch-Mani, B. and Mauch, F., The role of abscisic acid in plant-pathogen interactions, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 409–414.

Comments (0)

No login
gif