Ahmadi, M., Mirakhorli, N., Erginbas-Orakci, G., et al., Interactions among cereal cyst nematode Heterodera filipjevi, dryland crown rot Fusarium culmorum and drought on grain yield components and disease severity in bread wheat, Can. J. Plant Pathol., 2022, vol. 44, no. 3, pp. 415–431. https://doi.org/10.1080/07060661.2021.2013947
Chen, X., Li, C., Wang, H., and Guo, Z., WRKY transcription factors: evolution, binding, and action, Phytopathol. Res., 2019, vol. 1, pp. 1–15. https://doi.org/10.1186/s42483-019-0022-x
Huang, R., Liu, D., Huang, M., Ma, J., Li, Z., Li, M., and Sui, S., CpWRKY71, a WRKY transcription factor gene of wintersweet (Chimonanthus praecox), promotes flowering and leaf senescence in Arabidopsis, Int. J. Mol. Sci., 2019, vol. 20, no. 21, p. 5325, p. 5325. https://doi.org/10.3390/ijms20215325
Singh, A., Singh, P.K., Sharma, A.K., et al., Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus cajan L.), Plants, 2019, vol. 8, no. 7, p. 214. https://doi.org/10.3390/plants8070214
Article CAS PubMed PubMed Central Google Scholar
Sikora, R.A., Coyne, D., Hallmann, J., and Timper, P., Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture, Cambridge, UK: CABI, 2018, рр. 163–221.
Nicol, J.M., Bolat, N., Erginbas, G., et al., Adapted spring and winter wheat with resistance against multiple soilborne pathogens (cereal nematodes—Heterodera filipjevi and Pratylenchus spp. and crown rot—Fusarium culmorum) targeted for rainfed wheat production systems, Sixth Australasian Soilborne Diseases Symposium, 2010, p. 69.
Ning, P., Liu, C., Kang, J., and Lv, J., Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit conditions, Peer J., 2017, vol. 5, p. e3232. https://doi.org/10.7717/peerj.3232
Article CAS PubMed PubMed Central Google Scholar
Hassan, G., Al-Assas, K., and Abou Al-Fadil, T., Interactions between Heterodera avenae and Fusarium culmorum on yield components of wheat, nematode reproduction, and crown rot severity, Neotropical, 2012, vol. 42, pp. 260–266.
Nicol, J.M., Important nematode pests of cereals, Bread Wheat: Improvement and Production, Curtis, B.C., Rajaram, S., and Gómez, M., Eds., FAO Plant Production and Protection Series, Rome, 2002, pp. 345–366.
van Hulten, M., Pelser, M., van Loon, L.C., et al., Costs and benefits of priming for defense in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 14, pp. 5602–5607. https://doi.org/10.1073/pnas.0510213103
Article CAS PubMed PubMed Central Google Scholar
Jha, P.K., Vijay, A., Sahu, A., and Ashraf, M.Z., Comprehensive gene expression meta-analysis, and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders, Sci. Rep., 2016, vol. 6, pp. 1–13. https://doi.org/10.1038/srep37099
Erginbas-Orakci, G., Poole, G., Nicol, J.M., et al., Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat, J. Plant Dis. Prot., 2016, vol. 123, pp. 19–27. https://doi.org/10.1007/s41348-016-0001-8
Kong, L., Wu, D., Huang, W., et al., Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis, BMC Genomics, 2015, vol. 16. p. 801. https://doi.org/10.1186/s12864-015-2037-8
Article CAS PubMed PubMed Central Google Scholar
Yockteng, R., Almeida, A.M., Yee, S., Andre, T., Hill, C., and Specht, C.D., A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses, Appl. Plant Sci., 2013, vol. 1, no. 12, p. 1300070. https://doi.org/10.3732/apps.1300070
Rao, X., Huang, X., Zhou, Z., and Lin, X., An improvement of the 2–ΔΔCT method for quantitative real-time polymerase chain reaction data analysis, Biostat., Bioinf., Biomath., 2013, vol. 3, no. 3, pp. 71–85.
Aebi, H., Catalase, Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1974, pp. 673–680. https://doi.org/10.1016/b978-0-12-091302-2.50032-3
Lin, C.C. and Kao, C.H., NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings, Plant Soil, 1999, vol. 216, pp. 147–153. https://doi.org/10.1023/A:1004714506156
Ahuja, I., De Vos, R.C., Bones, A.M., and Hall, R.D., Plant molecular stress responses face climate change, Trends Plant Sci., 2010, vol. 15, no. 12, pp. 664–674. https://doi.org/10.1016/j.tplants.2010.08.002
Article CAS PubMed Google Scholar
Bakshi, M. and Oelmüller, R., WRKY transcription factors: jack of many trades in plants, Plant Signaling Behav., 2014, vol. 9, no. 2, p. e27700. https://doi.org/10.4161/psb.27700
Rushton, D.L., Tripathi, P., Rabara, R.C., et al., WRKY transcription factors: key components in abscisic acid signaling, Plant Biotechnol. J., 2012, vol. 10, pp. 2–11. https://doi.org/10.1111/j.1467-7652.2011.00634.x
Article CAS PubMed Google Scholar
Brand, L.H., Fischer, N.M., Harter, K., et al., Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays, Nucleic Acids Res., 2013, vol. 41, pp. 9764–9778. https://doi.org/10.1093/nar/gkt732
Article CAS PubMed PubMed Central Google Scholar
Wittkopp, P.J. and Kalay, G., Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence, Nat. Rev. Genet., 2011, vol. 13 no. 1, pp. 59–69. https://doi.org/10.1038/nrg3095
Article CAS PubMed Google Scholar
Jones, J.D. and Dangl, J.L., The plant immune system, Nature, 2006, vol. 444, pp. 323–329. https://doi.org/10.1038/nature05286
Shimono, M., Sugano, S., and Nakayama, A., Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance, Plant Cell, 2007, vol. 9, no. 6, pp. 2064–2076. https://doi.org/10.1105/tpc.106.046250
Xiao, J., Cheng, H., Li, X., et al., Rice WRKY13 regulates cross-talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements, Plant Physiol., 2013, vol. 163, no. 4, pp. 1868–1882. https://doi.org/10.1104/pp.113.226019
Article CAS PubMed PubMed Central Google Scholar
Han, M., Kim, C.Y., Lee, J., et al., OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice, Mol. Cells, 2014, vol. 37, no.7, pp. 532–539. https://doi.org/10.14348/molcells.2014.0128
Article CAS PubMed PubMed Central Google Scholar
van Etten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E., Two classes of plant antibiotics: phytoalexins versus “phytoanticipins,” Plant Cell, 1994, vol. 6, no. 9, pp. 1191–1192. https://doi.org/10.1105/tpc.6.9.1191
Article CAS PubMed Google Scholar
Kage, U., Yogendra, and K.N. Kushalappa, A.C., TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike, Sci. Rep., 2017, vol. 7, p. 42596. https://doi.org/10.1038/srep42596
Article CAS PubMed PubMed Central Google Scholar
Grunewald, W., De Smet, I., Lewis, D.R., et al., Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavanol biosynthesis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 5, pp. 1554–1559. https://doi.org/10.1073/pnas.1121134109
Article PubMed PubMed Central Google Scholar
Grunewald, W., Karimi, M., Wieczorek, K., et al., A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes, Plant Physiol., 2008, vol. 148, pp. 358–368. https://doi.org/10.1104/pp.108.119131
Article CAS PubMed PubMed Central Google Scholar
Wang, J., Wang, L., Yan, Y., et al., GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton, Plant Cell Rep., 2021, vol. 40, no. 11, pp. 2135–2150. https://doi.org/10.1007/s00299-020-02590-4
Article CAS PubMed Google Scholar
Sun, J., Hu, W., Zhou, R., et al., The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants, Plant Cell Rep., 2014, vol. 34, no. 1, pp. 23–35. https://doi.org/10.1007/s00299-014-1684-6
Article CAS PubMed Google Scholar
Ahammed, G.J., Li, X., Yang, Y., et al., Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2–mediated stomatal closure, Environ. Exp. Bot., 2020, vol. 171, p. 103960. https://doi.org/10.1016/j.envexpbot.2019.103960
Mauch-Mani, B. and Mauch, F., The role of abscisic acid in plant-pathogen interactions, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 409–414.
Comments (0)