Matthews, H.K., Bertoli, C., and de Bruin, R.A., Cell cycle control in cancer, Nat. Rev. Mol. Cell Biol., 2022, vol. 23, no. 1, pp. 74–88. https://doi.org/10.1038/s41580-021-00404-3
Article CAS PubMed Google Scholar
Bray, F., Ferlay, J., Soerjomataram, I., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin., 2018, vol. 68, no. 6, pp. 394–424. https://doi.org/10.3322/caac.21492
Sung, H., Ferlay, J., Siegel, R.L., et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin., 2021, vol. 71, no. 3, pp. 209–249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
Anderson, B.O., Ilbawi, A.M., Fidarova, E., et al., The Global Breast Cancer Initiative: a strategic collaboration to strengthen health care for non-communicable diseases, Lancet Oncol., 2021, vol. 22, no. 5, pp. 578–581. https://doi.org/10.1016/S1470-2045(21)00071-1
Boersma, B.J., Reimers, M., Yi, M., et al., A stromal gene signature associated with inflammatory breast cancer, Int. J. Cancer, 2008, vol. 122, no. 6, pp. 1324–1332. https://doi.org/10.1002/ijc.23237
Article CAS PubMed Google Scholar
Boussen, H., Bouzaiene, H., Ben Hassouna, J., et al., Inflammatory breast cancer in Tunisia: epidemiological and clinical trends, Cancer, 2010, vol. 116, no. 11, pp. 2730–2725. https://doi.org/10.1002/cncr.25175
Ueno, N.T., Fernandez, J.R.E., Cristofanilli, M., et al., International consensus on the clinical management of inflammatory breast cancer from the Morgan Welch Inflammatory Breast Cancer Research Program 10th Anniversary Conference, J. Cancer, 2018, vol. 9, no. 8, p. 1413. https://doi.org/10.7150/jca.23969
Bertucci, F., Houlgatte, R., Nguyen, C., et al., Gene expression profiling of cancer by use of DNA arrays: how far from the clinic?, Lancet Oncol., 2001, vol. 2, no. 11, pp. 674–682. https://doi.org/10.1093/hmg/9.20.2981
Article CAS PubMed Google Scholar
Alpaugh, M.L., Tomlinson, J.S., Ye, Y., and Barsky, S.H., Relationship of sialyl-Lewis(x/a) underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma, Am. J. Pathol., 2002, vol. 161, no. 2, pp. 619–628. https://doi.org/10.1016/S0002-9440(10)64217-4
Article CAS PubMed PubMed Central Google Scholar
Silvera, D., Arju, R., Darvishian, F., et al., Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer, Nat. Cell Biol., 2009, vol. 11, no. 7, pp. 903–908. https://doi.org/10.1038/ncb1900
Article CAS PubMed Google Scholar
van der Auwera, I., van Laere, S.J., van den Eynden, G.G., et al., Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification, Clin. Cancer Res., 2004, vol. 10, no. 23, pp. 7965–7971. https://doi.org/10.1158/1078-0432.CCR-04-0063
Article CAS PubMed Google Scholar
Polley, M.YC., Freidlin, B., Korn, E.L., et al., Statistical and practical considerations for clinical evaluation of predictive biomarkers, J. Natl. Cancer Inst., 2013, vol. 105, no. 22, pp. 1677–1683. https://doi.org/10.1093/jnci/djt282
Article PubMed PubMed Central Google Scholar
Wang, X., Semba, T., Phi, L.T.H., et al., Targeting signaling pathways in inflammatory breast cancer, Cancers, 2020, vol. 12, no. 9, p. 2479. https://doi.org/10.3390/cancers12092479
Article CAS PubMed PubMed Central Google Scholar
Erickson, B.J., Korfiatis, P., Akkus, Z., and Kline, T.L., Machine learning for medical imaging, Radiographics, 2017, vol. 37, no. 2, pp. 505–515. https://doi.org/10.1148/rg.2017160130
Kourou, K., Exarchos, T.P., Exarchos, K.P., et al., Machine learning applications in cancer prognosis and prediction, Comput. Struct. Biotechnol. J., 2015, vol. 13, no. 1, pp. 8–17. https://doi.org/10.1016/j.csbj.2014.11.005
Article CAS PubMed Google Scholar
Hastie, T., Tibshirani, R., Friedman, J.H., and Friedman, J.H., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2009. https://doi.org/10.1007/978-0-387-84858-7
Fallon, B., Ma, J., Allan, K., et al., Opportunities for prevention and intervention with young children: lessons from the Canadian incidence study of reported child abuse and neglect, Child Adolesc. Psychiatry Ment. Health, 2013, vol. 7, no. 1, pp. 1–13. https://doi.org/10.1186/1753-2000-7-4
Breiman, L. and Cutler, R., Random forests machine learning, J. Clin. Microbiol., 2001, vol. 2, no. 1, pp. 199–228. https://doi.org/10.1023/A:1010933404324
Martin, D.N., Boersma, B.J., Yi, M., et al., Differences in the tumor microenvironment between African-American and European-American breast cancer patients, PLoS One, 2009, vol. 4, no. 2, p. e4531. https://doi.org/10.1371/journal.pone.0004531
Article CAS PubMed PubMed Central Google Scholar
Saeys, Y., Inza, I., and Larranaga, P., A review of feature selection techniques in bioinformatics, Bioinformatics, 2007, vol. 23, no. 19, pp. 2507–2517. https://doi.org/10.1093/bioinformatics/btm344
Article CAS PubMed Google Scholar
Monika Kumar, M. and Kumar, M., XGBoost: 2D-object recognition using shape descriptors and extreme gradient boosting classifier, Comput. Methods Data Eng.: Proc. ICMDE, 2020, vol. 1, no. 1, pp. 207–222. https://doi.org/10.1007/978-981-15-6876-3_16
Powers, D.M., Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, arXiv, 2020, vol. 1, no. 1, pp. 37–63. https://doi.org/10.48550/arXiv.2010.16061
Bieche, I., Lerebours, F., and Tozlu, S.l., et al., Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature, Clin. Cancer Res., 2004, vol. 10, no. 20, pp. 6789–6795. https://doi.org/10.1158/1078-0432.CCR-04-0306
Article CAS PubMed Google Scholar
Jansen, M.P.H.M., Sas, L., Sieuwerts, A.M., et al., Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease, Mol. Oncol., 2015, vol. 9, no. 6, pp. 1218–1233. https://doi.org/10.1016/j.molonc.2015.02.006
Article CAS PubMed PubMed Central Google Scholar
Kolapalli, S.P., Sahu, R., Chauhan, N.R., et al., RNA-binding RING E3-ligase DZIP3/hRUL138 stabilizes cyclin D1 to drive cell-cycle and cancer progression, Cancer Res., 2021, vol. 81, no. 2, pp. 315–331. https://doi.org/10.1158/0008-5472.CAN-20-1871
Article CAS PubMed Google Scholar
Alifanov, V.V., Tashireva, L.A., Zavyalova, M.V., and Perelmuter, V.M., LIMCH1 as a new potential metastasis predictor in breast cancer, Asian Pac. J. Cancer Prev., 2022, vol. 23, no. 11, pp. 3947–3952. https://doi.org/10.31557/APJCP.2022.23.11.3947
Article CAS PubMed PubMed Central Google Scholar
Zhao, J., Liu, J., Wu, N., et al., ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer, Oncol. Lett., 2020, vol. 20, no. 3, pp. 2499–2505. https://doi.org/10.3892/ol.2020.11768
Article CAS PubMed PubMed Central Google Scholar
Zhou, X., Jafari, N., Deng, S., and Huang, C., The function of ubiquitin protein ligase E3A and its roles in human diseases, J. Biochem. Mol. Biol. Res., 2015, vol. 1, no. 1, pp. 14–18. https://doi.org/10.6051/j.issn.2313-7177.2015.01.2
Gao, X., Mohsin, S.K., Gatalica, Z., et al., Decreased expression of E6-associated protein in breast and prostate carcinomas, Endocrinology, 2005, vol. 146, no. 4, pp. 1707–1712. https://doi.org/10.1210/en.2004-1198
Article CAS PubMed Google Scholar
Moslehi, S., Rabiei, N., Soltanian, A.R., and Mamani, M., Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran, BMC Med. Inf. Dec. Making, 2022, vol. 22, no. 192, pp. 1–12. https://doi.org/10.1186/s12911-022-01939-x
Comments (0)