Gong, R., Xing, L., Yin, J., Ding, Y., Liu, X., Bao, J., and Li, J., Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers, J. Anim. Sci., 2023, vol. 101, p. skad185. https://doi.org/10.1093/jas/skad185
Zhang, S., Liu, Y., Chai, Y., Xing, L., and Li, J., Effects of intermittent cold stimulation on growth performance, meat quality, antioxidant capacity and liver lipid metabolism in broiler chickens, Poult. Sci., 2024, vol. 103, no. 3, p. 103442. https://doi.org/10.1016/j.psj.2024.103442
Article CAS PubMed PubMed Central Google Scholar
Shinder, D., Ruzal, M., Giloh, M., et al., Improvement of cold resistance and performance of broilers by acute cold exposure during late embryogenesis, Poult. Sci., 2011, vol. 90, no. 3, pp. 633–641. https://doi.org/10.3382/ps.2010-01089
Article CAS PubMed Google Scholar
Fedorova, E.S., Dementieva, N.V., Shcherbakov, Y.S., and Stanishevskaya, O.I., Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation, Biology, 2022, vol. 11, no. 4, p. 547. https://doi.org/10.3390/biology11040547
Article CAS PubMed PubMed Central Google Scholar
Nguyen, P., Greene, E., Ishola, P., et al., Chronic mild cold conditioning modulates the expression of hypothalamic neuropeptide and intermediary metabolic-related genes and improves growth performances in young chicks, PLoS One, 2015, vol. 10, no. 11, p. e142319. https://doi.org/10.1371/journal.pone.0142319
Bal, N.C. and Muthu, P., Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1793, p. 135. https://doi.org/10.1098/rstb.2019.0135
Sütt, S., Cansby, E., Paul, A., et al., STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue, J. Endocrinol., 2018, vol. 238, no. 3, pp. 187–202. https://doi.org/10.1530/JOE-18-0182
Luo, L., Wang, L., Luo, Y., et al., Glucocorticoid/adiponectin axis mediates full activation of cold-induced beige fat thermogenesis, Biomolecules, 2021, vol. 11, no. 11, p. 1573. https://doi.org/10.3390/biom11111573
Article CAS PubMed PubMed Central Google Scholar
Liu, L., Liu, X., Cui, H., et al., Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens, BMC Genomics, 2019, vol. 20, pp. 1–10. https://doi.org/10.1186/s12864-019-6221-0
Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Bocharov, M.I., Body thermoregulation under cold exposure (a review): II, Zh. Med.-Biol. Issled., 2015, no. 2, pp. 5–16.
Vallerand, A.L., Zamecnik, J., Jones, P.J., and Jacobs, I., Cold stress increases lipolysis, FFA Ra and TG/FFA cycling in humans, Aviat., Space, Environ. Med., 1999, vol. 70, no. 1, pp. 42–50.
Comments (0)