The Effect of Low-Temperature Exposure in Embryogenesis on the Expression of the , , and Genes in Chickens

Gong, R., Xing, L., Yin, J., Ding, Y., Liu, X., Bao, J., and Li, J., Appropriate cold stimulation changes energy distribution to improve stress resistance in broilers, J. Anim. Sci., 2023, vol. 101, p. skad185. https://doi.org/10.1093/jas/skad185

Zhang, S., Liu, Y., Chai, Y., Xing, L., and Li, J., Effects of intermittent cold stimulation on growth performance, meat quality, antioxidant capacity and liver lipid metabolism in broiler chickens, Poult. Sci., 2024, vol. 103, no. 3, p. 103442. https://doi.org/10.1016/j.psj.2024.103442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinder, D., Ruzal, M., Giloh, M., et al., Improvement of cold resistance and performance of broilers by acute cold exposure during late embryogenesis, Poult. Sci., 2011, vol. 90, no. 3, pp. 633–641. https://doi.org/10.3382/ps.2010-01089

Article  CAS  PubMed  Google Scholar 

Fedorova, E.S., Dementieva, N.V., Shcherbakov, Y.S., and Stanishevskaya, O.I., Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation, Biology, 2022, vol. 11, no. 4, p. 547. https://doi.org/10.3390/biology11040547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, P., Greene, E., Ishola, P., et al., Chronic mild cold conditioning modulates the expression of hypothalamic neuropeptide and intermediary metabolic-related genes and improves growth performances in young chicks, PLoS One, 2015, vol. 10, no. 11, p. e142319. https://doi.org/10.1371/journal.pone.0142319

Article  CAS  Google Scholar 

Bal, N.C. and Muthu, P., Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis, Philos. Trans. R. Soc., B, 2020, vol. 375, no. 1793, p. 135. https://doi.org/10.1098/rstb.2019.0135

Sütt, S., Cansby, E., Paul, A., et al., STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue, J. Endocrinol., 2018, vol. 238, no. 3, pp. 187–202. https://doi.org/10.1530/JOE-18-0182

Article  PubMed  Google Scholar 

Luo, L., Wang, L., Luo, Y., et al., Glucocorticoid/adiponectin axis mediates full activation of cold-induced beige fat thermogenesis, Biomolecules, 2021, vol. 11, no. 11, p. 1573. https://doi.org/10.3390/biom11111573

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, L., Liu, X., Cui, H., et al., Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens, BMC Genomics, 2019, vol. 20, pp. 1–10. https://doi.org/10.1186/s12864-019-6221-0

Article  CAS  Google Scholar 

Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Bocharov, M.I., Body thermoregulation under cold exposure (a review): II, Zh. Med.-Biol. Issled., 2015, no. 2, pp. 5–16.

Vallerand, A.L., Zamecnik, J., Jones, P.J., and Jacobs, I., Cold stress increases lipolysis, FFA Ra and TG/FFA cycling in humans, Aviat., Space, Environ. Med., 1999, vol. 70, no. 1, pp. 42–50.

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif