Venkatesh T. Editorial role of a clinical biochemist in evaluating the impact of lead poisoning. Indian J Clin Biochem. 2013;28(1):1–2. https://doi.org/10.1007/s12291-012-0290-z.
Baranowska-Bosiacka I, Hlynczak AJ. The effect of lead ions on the energy metabolism of human erythrocytes in vitro. Comp Biochem Physiol C Toxicol Pharmacol. 2003;134(3):403–16. https://doi.org/10.1016/S1532-0456(03)00008-5.
Article CAS PubMed Google Scholar
Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8(2):55–64. https://doi.org/10.1515/intox-2015-0009.
Article CAS PubMed PubMed Central Google Scholar
Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Expert Opin Drug Metab Toxicol. 2007;3(4):527–44. https://doi.org/10.1517/17425225.3.4.527.
Article CAS PubMed Google Scholar
Han Q, Zhang W, Guo J, Zhu Q, Chen H, Xia Y, et al. Mitochondrion: a sensitive target for lead exposure. J Toxicol Sci. 2021;46(8):345–8. https://doi.org/10.2131/jts.46.345.
Article CAS PubMed Google Scholar
Witkowska D, Słowik J, Chilicka K. Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules. 2021;26(19):6060. https://doi.org/10.3390/molecules26196060.
Article CAS PubMed PubMed Central Google Scholar
Bijoor AR, Sudha S, Venkatesh T. Neurochemical and neurobehavioral effects of low lead exposure on the developing brain. Indian J Clin Biochem. 2012;27(2):147–51. https://doi.org/10.1007/s12291-012-0190-2.
Article CAS PubMed PubMed Central Google Scholar
Himani KR, Ansari JA, Mahdi AA, Sharma D, Karunanand B, Datta SK. Blood lead levels in occupationally exposed workers involved in battery factories of Delhi-NCR region: effect on vitamin D and calcium metabolism. Indian J Clin Biochem. 2020;35(1):80–7. https://doi.org/10.1007/s12291-018-0797-z.
Article CAS PubMed Google Scholar
Mostafalou S, Baeeri M, Bahadar H, Soltany-Rezaee-Rad M, Gholami M, Abdollahi M. Molecular mechanisms involved in lead induced disruption of hepatic and pancreatic glucose metabolism. Environ Toxicol Pharmacol. 2015;39(1):16–26. https://doi.org/10.1016/j.etap.2014.11.001.
Article CAS PubMed Google Scholar
Khalil-Manesh F, Gonick HC, Cohen A, Bergamaschi E, Mutti A. Experimental model of lead nephropathy II. Effect of removal from lead exposure and chelation treatment with dimercaptosuccinic acid (DMSA). Environ Res. 1992;58(1):35–54. https://doi.org/10.1016/s0013-9351(05)80203-8.
Article CAS PubMed Google Scholar
Vafaee F, Derakhshani M, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Alpha-lipoic acid, as an effective agent against toxic elements: a review. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;398(4):3345–72. https://doi.org/10.1007/s00210-024-03576-9.
Packer L, Witt EH, Tritschler HJ. Alpha lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–50. https://doi.org/10.1016/0891-5849(95)00017-r.
Article CAS PubMed Google Scholar
Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, et al. Alpha-lipoic acid and glucose metabolism: a comprehensive update on biochemical and therapeutic features. Nutrients. 2022;15(1):18. https://doi.org/10.3390/nu15010018.
Article CAS PubMed PubMed Central Google Scholar
D’souza HS, Dsouza SA, Menezes G, Venkatesh T. Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J Clin Biochem. 2011;26(2):197–201. https://doi.org/10.1007/s12291-011-0122-6.
Article CAS PubMed PubMed Central Google Scholar
Waidande SS, Kshirsagar M, Thorat VM, Tiwari DD. Role of antioxidant supplementation in enhancing chelation therapy for lead-induced oxidative stress in rats. Cureus. 2025;17(2): e79699. https://doi.org/10.7759/cureus.79699.
Article PubMed PubMed Central Google Scholar
Sivaprasad TR, Malarkodi SP, Varalakshmi P. Therapeutic efficacy of lipoic acid in combination with dimercaptosuccinic acid against lead-induced renal tubular defects and on isolated kidney brush-border enzyme activities. Chem Biol Interact. 2004;147(3):259–71. https://doi.org/10.1016/j.cbi.2004.01.004.
Article CAS PubMed Google Scholar
Sivaprasad R, Nagaraj M, Varalakshmi P. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney. Arch Toxicol. 2002;76(8):437–41. https://doi.org/10.1007/s00204-002-0350-x.
Article CAS PubMed Google Scholar
Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12(2):166–71. https://doi.org/10.1093/geronj/12.2.166.
Article CAS PubMed Google Scholar
Sasaki T, Matsui S. Effect of acetic acid concentration on the color reaction in the o-toluidine-boric acid method for blood glucose estimation. Jpn J Clin Chem. 1972;1(3):346–53. https://doi.org/10.14921/jscc1971b.1.3_346.
King J. The transferases-alanine and aspartate transaminases. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 121–138
Horrocks JE, Ward J, King J. A routine method for the determination of phosphoglucoisomerase activity in body fluid. J Clin Pathol. 1963;16(3):248–51. https://doi.org/10.1136/jcp.16.3.248.
Article CAS PubMed PubMed Central Google Scholar
King J. The phosphohydrolases-acid and alkaline phosphatase. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 191–208
Gancedo JM, Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase fermenting and non-fermenting yeasts. Arch Microbiol. 1971;76(2):132–8. https://doi.org/10.1007/BF00411787.
Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66(2):375–400. https://doi.org/10.1016/s0021-9258(18)84756-1.
Slater EC, Bonner WD. The effect of fluoride on the succinic oxidase system. Biochem J. 1952;52(2):185–96. https://doi.org/10.1042/bj0520185.
Article CAS PubMed PubMed Central Google Scholar
Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem. 1948;174(3):961–77. https://doi.org/10.1016/S0021-9258(18)57306-3.
Article CAS PubMed Google Scholar
King J. The dehydrogenases or oxidoneductase-lactate dehydrogenase. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 83–93
Bonting SL. Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar EE, editor. Membranes and ion transport. New York: Wiley; 1970. p. 257–363.
Ohnishi T, Suzuki T, Ozacoa K. A comparative study of plasma membrane magnesium ion ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta. 1982;684(1):67–74. https://doi.org/10.1016/0005-2736(82)90050-5.
Article CAS PubMed Google Scholar
Hjerten S, Pan H. Purification and characterisation of two forms of a low affinity calcium ion-ATPase from erythrocyte membrane. Biochim Biophys Acta. 1983;728(2):281–8. https://doi.org/10.1016/0005-2736(83)90480-7.
Article CAS PubMed Google Scholar
Kawai Y, Anno K. Mucopolysaccharide-degrading enzymes from the liver of the squid, Ommastrephes sloanipacificus I hyaluronidase. Biochim Biophys Acta. 1971;242(2):428–36. https://doi.org/10.1016/0005-2744(71)90234-8.
Comments (0)