Combined Effects of Lipoic Acid and Dimercaptosuccinic Acid in Improving Lead-Induced Alterations on Glucose Metabolism, Energy Metabolism and Tissue Histology

Venkatesh T. Editorial role of a clinical biochemist in evaluating the impact of lead poisoning. Indian J Clin Biochem. 2013;28(1):1–2. https://doi.org/10.1007/s12291-012-0290-z.

Article  PubMed  Google Scholar 

Baranowska-Bosiacka I, Hlynczak AJ. The effect of lead ions on the energy metabolism of human erythrocytes in vitro. Comp Biochem Physiol C Toxicol Pharmacol. 2003;134(3):403–16. https://doi.org/10.1016/S1532-0456(03)00008-5.

Article  CAS  PubMed  Google Scholar 

Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8(2):55–64. https://doi.org/10.1515/intox-2015-0009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Expert Opin Drug Metab Toxicol. 2007;3(4):527–44. https://doi.org/10.1517/17425225.3.4.527.

Article  CAS  PubMed  Google Scholar 

Han Q, Zhang W, Guo J, Zhu Q, Chen H, Xia Y, et al. Mitochondrion: a sensitive target for lead exposure. J Toxicol Sci. 2021;46(8):345–8. https://doi.org/10.2131/jts.46.345.

Article  CAS  PubMed  Google Scholar 

Witkowska D, Słowik J, Chilicka K. Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules. 2021;26(19):6060. https://doi.org/10.3390/molecules26196060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bijoor AR, Sudha S, Venkatesh T. Neurochemical and neurobehavioral effects of low lead exposure on the developing brain. Indian J Clin Biochem. 2012;27(2):147–51. https://doi.org/10.1007/s12291-012-0190-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Himani KR, Ansari JA, Mahdi AA, Sharma D, Karunanand B, Datta SK. Blood lead levels in occupationally exposed workers involved in battery factories of Delhi-NCR region: effect on vitamin D and calcium metabolism. Indian J Clin Biochem. 2020;35(1):80–7. https://doi.org/10.1007/s12291-018-0797-z.

Article  CAS  PubMed  Google Scholar 

Mostafalou S, Baeeri M, Bahadar H, Soltany-Rezaee-Rad M, Gholami M, Abdollahi M. Molecular mechanisms involved in lead induced disruption of hepatic and pancreatic glucose metabolism. Environ Toxicol Pharmacol. 2015;39(1):16–26. https://doi.org/10.1016/j.etap.2014.11.001.

Article  CAS  PubMed  Google Scholar 

Khalil-Manesh F, Gonick HC, Cohen A, Bergamaschi E, Mutti A. Experimental model of lead nephropathy II. Effect of removal from lead exposure and chelation treatment with dimercaptosuccinic acid (DMSA). Environ Res. 1992;58(1):35–54. https://doi.org/10.1016/s0013-9351(05)80203-8.

Article  CAS  PubMed  Google Scholar 

Vafaee F, Derakhshani M, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Alpha-lipoic acid, as an effective agent against toxic elements: a review. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;398(4):3345–72. https://doi.org/10.1007/s00210-024-03576-9.

Article  CAS  Google Scholar 

Packer L, Witt EH, Tritschler HJ. Alpha lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–50. https://doi.org/10.1016/0891-5849(95)00017-r.

Article  CAS  PubMed  Google Scholar 

Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, et al. Alpha-lipoic acid and glucose metabolism: a comprehensive update on biochemical and therapeutic features. Nutrients. 2022;15(1):18. https://doi.org/10.3390/nu15010018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’souza HS, Dsouza SA, Menezes G, Venkatesh T. Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J Clin Biochem. 2011;26(2):197–201. https://doi.org/10.1007/s12291-011-0122-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waidande SS, Kshirsagar M, Thorat VM, Tiwari DD. Role of antioxidant supplementation in enhancing chelation therapy for lead-induced oxidative stress in rats. Cureus. 2025;17(2): e79699. https://doi.org/10.7759/cureus.79699.

Article  PubMed  PubMed Central  Google Scholar 

Sivaprasad TR, Malarkodi SP, Varalakshmi P. Therapeutic efficacy of lipoic acid in combination with dimercaptosuccinic acid against lead-induced renal tubular defects and on isolated kidney brush-border enzyme activities. Chem Biol Interact. 2004;147(3):259–71. https://doi.org/10.1016/j.cbi.2004.01.004.

Article  CAS  PubMed  Google Scholar 

Sivaprasad R, Nagaraj M, Varalakshmi P. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney. Arch Toxicol. 2002;76(8):437–41. https://doi.org/10.1007/s00204-002-0350-x.

Article  CAS  PubMed  Google Scholar 

Brandstrup N, Kirk JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol. 1957;12(2):166–71. https://doi.org/10.1093/geronj/12.2.166.

Article  CAS  PubMed  Google Scholar 

Sasaki T, Matsui S. Effect of acetic acid concentration on the color reaction in the o-toluidine-boric acid method for blood glucose estimation. Jpn J Clin Chem. 1972;1(3):346–53. https://doi.org/10.14921/jscc1971b.1.3_346.

Article  CAS  Google Scholar 

King J. The transferases-alanine and aspartate transaminases. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 121–138

Horrocks JE, Ward J, King J. A routine method for the determination of phosphoglucoisomerase activity in body fluid. J Clin Pathol. 1963;16(3):248–51. https://doi.org/10.1136/jcp.16.3.248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

King J. The phosphohydrolases-acid and alkaline phosphatase. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 191–208

Gancedo JM, Gancedo C. Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase fermenting and non-fermenting yeasts. Arch Microbiol. 1971;76(2):132–8. https://doi.org/10.1007/BF00411787.

Article  CAS  Google Scholar 

Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66(2):375–400. https://doi.org/10.1016/s0021-9258(18)84756-1.

Article  CAS  Google Scholar 

Slater EC, Bonner WD. The effect of fluoride on the succinic oxidase system. Biochem J. 1952;52(2):185–96. https://doi.org/10.1042/bj0520185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem. 1948;174(3):961–77. https://doi.org/10.1016/S0021-9258(18)57306-3.

Article  CAS  PubMed  Google Scholar 

King J. The dehydrogenases or oxidoneductase-lactate dehydrogenase. In: Practical clinical enzymology. London: D Van Nostrand Company Ltd.; 1965. pp. 83–93

Bonting SL. Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar EE, editor. Membranes and ion transport. New York: Wiley; 1970. p. 257–363.

Google Scholar 

Ohnishi T, Suzuki T, Ozacoa K. A comparative study of plasma membrane magnesium ion ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta. 1982;684(1):67–74. https://doi.org/10.1016/0005-2736(82)90050-5.

Article  CAS  PubMed  Google Scholar 

Hjerten S, Pan H. Purification and characterisation of two forms of a low affinity calcium ion-ATPase from erythrocyte membrane. Biochim Biophys Acta. 1983;728(2):281–8. https://doi.org/10.1016/0005-2736(83)90480-7.

Article  CAS  PubMed  Google Scholar 

Kawai Y, Anno K. Mucopolysaccharide-degrading enzymes from the liver of the squid, Ommastrephes sloanipacificus I hyaluronidase. Biochim Biophys Acta. 1971;242(2):428–36. https://doi.org/10.1016/0005-2744(71)90234-8.

Article  CAS 

Comments (0)

No login
gif