Paul MK, Mukhopadhyay AK. Tyrosine kinase—role and significance in Cancer. Int J Med Sci. 2004;1(2):101–1152. https://doi.org/10.7150/ijms.1.101.
Article CAS PubMed PubMed Central Google Scholar
Azevedo A, Silva S, Rueff J. Non-receptor tyrosine kinases role and significance in hematological malignancies. In: Ren H, editor. Tyrosine kinases as druggable targets in cancer. London: IntechOpen; 2019. pp. 1–33.
Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58. https://doi.org/10.1186/s12943-018-0782-4.
Article CAS PubMed PubMed Central Google Scholar
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci. 2014;51(3):125–37. https://doi.org/10.3109/10408363.2013.874403.
Article CAS PubMed Google Scholar
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med. 2020;98:1385–95. https://doi.org/10.1007/s00109-020-01958-z.
Article CAS PubMed Google Scholar
Zhong Y, Johnson AJ, Byrd JC, Dubovsky JA. Targeting interleukin-2-inducible T-cell kinase (ITK) in T-cell related diseases. Postdoc J. 2014;2(6):1–11. https://doi.org/10.14304/surya.jpr.v2n6.1.
Article PubMed PubMed Central Google Scholar
Huang L, Ye K, McGee MC, Nidetz NF, Elmore JP, Limper CB, et al. Interleukin-2-inducible T-cell kinase deficiency impairs early pulmonary protection against Mycobacterium tuberculosis infection. Front Immunol. 2020;10:3103. https://doi.org/10.3389/fimmu.2019.03103.
Article CAS PubMed PubMed Central Google Scholar
Ghosh S, Drexler I, Bhatia S, Gennery AR, Borkhardt A. Interleukin-2-inducible T-cell kinase deficiency—new patients, new insight? Front Immunol. 2018;9:979. https://doi.org/10.3389/fimmu.2018.00979.
Article CAS PubMed PubMed Central Google Scholar
Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws H, et al. Girls homozygous for an IL-2–inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119(5):1350–8. https://doi.org/10.1172/jci37901.
Article CAS PubMed PubMed Central Google Scholar
Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26:963–71. https://doi.org/10.1038/leu.2011.371.
Article CAS PubMed Google Scholar
Dowdell KC, Howe M, Roy A, Niemela J, Wilson W, McElwee J, et al. A missense mutation impairs ITK function in a patient with severe Epstein-Barr virus disease. J Immunol. 2018;200(1Supplement):1665. https://doi.org/10.4049/jimmunol.200.Supp.166.5.
Wallace JG, Alosaimi M, Khayat CD, Jaber F, Almutairi A, Beaussant-Cohen S, et al. ITK deficiency presenting as autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2020;147(2):743–5. https://doi.org/10.1016/j.jaci.2020.06.019.
Article CAS PubMed PubMed Central Google Scholar
Youssefian L, Vahidnezhad H, Yousefi M, Saeidian AH, Azizpour A, Touati A, et al. Inherited Interleukin 2–inducible T-cell kinase deficiency in siblings with epidermodysplasia verruciformis and hodgkin lymphoma. Clin Infect Dis. 2019;68(11):1983–1941. https://doi.org/10.1093/cid/ciy942.
Ogishi M, Yang R, Rodriguez R, Golec DP, Martin E, Philippot Q, et al. Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis. J Exp Med. 2023;220(1):e20220484. https://doi.org/10.1084/jem.20220484.
Article CAS PubMed Google Scholar
Farrokh P. Bioinformatics analysis of non-synonymous single nucleotide polymorphisms in human Adk gene. Russ J Genet. 2024;60(6):828–37. https://doi.org/10.1134/S1022795424700273.
Pal LR, Moult J. Genetic basis of common human disease: insight into the role of missense SNPs from genome wide association studies. J Mol Biol. 2015;427(13):2271–89. https://doi.org/10.1016/j.jmb.2015.04.014.
Article CAS PubMed PubMed Central Google Scholar
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4. https://doi.org/10.1093/nar/gkg509.
Article CAS PubMed PubMed Central Google Scholar
Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006;22(22):2729–34. https://doi.org/10.1093/bioinformatics/btl423.
Article CAS PubMed Google Scholar
Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics. 2013;14(Suppl 3):S6. https://doi.org/10.1186/1471-2164-14-S3-S6.
Article PubMed PubMed Central Google Scholar
Yates CM, Filippis I, Kelley LA, Sternberg MJE. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J Mol Biol. 2014;426(14):2692–701. https://doi.org/10.1016/j.jmb.2014.04.026.
Article CAS PubMed PubMed Central Google Scholar
Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GLA, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34(1):57–65. https://doi.org/10.1002/humu.22225.
Article CAS PubMed Google Scholar
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013. https://doi.org/10.1002/0471142905.hg0720s76.
Schubach M, Maass T, Nazaretyan L, Röner S, Kircher M. CADD v1.7: using protein Language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 2024;52:D1143–54. https://doi.org/10.1093/nar/gkad989.
Article CAS PubMed PubMed Central Google Scholar
Tang H, Thomas PD. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics. 2016;32(14):2230–2. https://doi.org/10.1093/bioinformatics/btw222.
Article CAS PubMed Google Scholar
Capriotti E, Altman RB, Bromberg Y. Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics. 2013;14(Suppl 3):S2. https://doi.org/10.1186/1471-2164-14-S3-S2.
Article PubMed PubMed Central Google Scholar
Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam H, et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun. 2020;11:5918. https://doi.org/10.1038/s41467-020-19669-x.
Article CAS PubMed PubMed Central Google Scholar
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–10. https://doi.org/10.1093/nar/gki375.
Article CAS PubMed PubMed Central Google Scholar
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62(4):1125–32. 1002/prot.20810.
Comments (0)