Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/S0140-6736(23)01301-6.
Zhang J, Zhang Z, Zhang K, Ge X, Sun R, Zhai X. Early detection of type 2 diabetes risk: limitations of current diagnostic criteria. Front Endocrinol. 2023;14:1260623. https://doi.org/10.3389/fendo.2023.1260623.
Ginting JB, Suci T, Ginting CN, Girsang E. Early detection system of risk factors for diabetes mellitus type 2 utilization of machine learning-random forest. J Family Commun Med. 2023;30(3):171–9. https://doi.org/10.4103/jfcm.jfcm_33_23.
Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941. https://doi.org/10.1038/s41467-018-04951-w.
Article CAS PubMed PubMed Central Google Scholar
Kim H, Westerman KE, Smith K, Chiou J, Cole JB, Majarian T, et al. High-throughput genetic clustering of type 2 diabetes loci reveals heterogeneous mechanistic pathways of metabolic disease. Diabetologia. 2022;66(2):315–28. https://doi.org/10.1007/s00125-022-05848-6.
Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72. https://doi.org/10.1038/s41588-022-01058-3.
Article CAS PubMed PubMed Central Google Scholar
Shitomi-Jones LM, Akam L, Hunter D, Singh P, Mastana S. Genetic risk scores for the determination of type 2 diabetes mellitus (T2DM) in North India. Int J Environ Res Public Health. 2023;20(4):3729. https://doi.org/10.3390/ijerph20043729.
Article CAS PubMed PubMed Central Google Scholar
Rout M, Wander GS, Ralhan S, Singh JR, Morris AP, Davies J, et al. Assessing the prediction of type 2 diabetes risk using polygenic and clinical risk scores in South Asian study populations. Ther Adv Endocrinol Metab. 2023;14:20420188231220120. https://doi.org/10.1177/20420188231220120.
Article CAS PubMed PubMed Central Google Scholar
Hou C, Yang H, Qu Y, Zhou M, Tian X, Zhang J, et al. Health consequences of early-onset compared with late-onset type 2 diabetes mellitus. Precis Clin Med. 2022;5(2):pbac015. https://doi.org/10.1093/pcmedi/pbac015.
Article PubMed PubMed Central Google Scholar
Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003;19(3):376–82. https://doi.org/10.1093/bioinformatics/btf869.
Article CAS PubMed Google Scholar
Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, et al. SRplot: a free online platform for data visualization and graphing. PLoS ONE. 2023;18(11): e0294236. https://doi.org/10.1371/journal.pone.0294236.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Ning C, Mu J, Li D, Ma Y, Meng X. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem. 2021;476(5):2219–32. https://doi.org/10.1007/s11010-021-04086-5.
Article CAS PubMed Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. https://doi.org/10.1038/nature05911.
Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Kim HL, et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature. 2024;627(8003):347–57. https://doi.org/10.1038/s41586-024-07019-6.
Article CAS PubMed PubMed Central Google Scholar
Cai L, Wheeler E, Kerrison ND, Luan J, Deloukas P, Franks PW, et al. Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Sci Data. 2020;7(1):393. https://doi.org/10.1038/s41597-020-00716-7.
Article PubMed PubMed Central Google Scholar
Shahvazian E, Mahmoudi MB, Yazd EF, Ghaedi H, Kheirkhah J, Peymani M, et al. The KLF14 variant is associated with type 2 diabetes and HbA1C level. Biochem Genet. 2021;59(2):574–88. https://doi.org/10.1007/s10528-020-10015-w.
Article CAS PubMed Google Scholar
Small KS, Todorčević M, Civelek M, El-Sayed Moustafa JS, Wang X, Thomas AP, et al. Author correction: regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet. 2018;50(9):1342. https://doi.org/10.1038/s41588-018-0180-2.
Article CAS PubMed Google Scholar
Møller AB, Klip A, Sylow L. Rho GTPases—emerging regulators of glucose homeostasis and metabolic health. Cells. 2019;8(5):434. https://doi.org/10.3390/cells8050434.
Article CAS PubMed PubMed Central Google Scholar
Sim X, Ong RTH, Suo C, Tay WT, Liu J, Ng DPK, et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7(4): e1001363. https://doi.org/10.1371/journal.pgen.1001363.
Article CAS PubMed PubMed Central Google Scholar
Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8(9): e1002921. https://doi.org/10.1371/journal.pgen.1002921.
Article CAS PubMed PubMed Central Google Scholar
Kang YE, Choung S, Lee JH, Kim HJ, Ku BJ. The role of circulating Slit2, the one of the newly batokines, in human diabetes mellitus. Endocrinol Metab. 2017;32(3):383–8. https://doi.org/10.3803/EnM.2017.32.3.383.
Gu H. Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes. Curr Diabetes Rev. 2017;13(2):132–40. https://doi.org/10.2174/1573399812666151123104540.
Article CAS PubMed Google Scholar
Fan M, Li W, Wang L, Gu S, Dong S, Chen M, et al. Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis. Endocrine. 2016;53(2):381–94. https://doi.org/10.1007/s12020-016-0870-4.
Article CAS PubMed Google Scholar
Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, et al. Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58(7):1690–9. https://doi.org/10.2337/db08-1494.
Article CAS PubMed PubMed Central Google Scholar
Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7. https://doi.org/10.1038/nature18642.
Article CAS PubMed PubMed Central Google Scholar
Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6(2): e1000847. https://doi.org/10.1371/journal.pgen.1000847.
Article CAS PubMed PubMed Central Google Scholar
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41. https://doi.org/10.1126/science.1142364.
Comments (0)