Exploring the Prognostic and Diagnostic Value of miR-497-5p and miR-17-5p in Breast Cancer: In Silico and Experimental Analysis

World Health Organization. Breast cancer. Available at: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. Accessed 2 Dec 2024.&#8203.

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer registry programme, India. Indian J Med Res. 2022;156(45):598–607.

PubMed  Google Scholar 

Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM, et al. High expression of miR-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci Rep. 2021;11(1):13864.

CAS  PubMed  Google Scholar 

Bozgeyik E. MicroRNA-17-5p targets expression of cancer-associated genes in breast cancer cells. Meta Gene. 2020;24:100614. https://doi.org/10.1128/MCB.00242-06.

Article  CAS  Google Scholar 

Nashtahosseini Z, Sadeghi F, Aghamaali M. Changes in expression of miRNA-320a and miRNA-497-5p in early stage of breast cancer. Iran Red Crescent Med J. 2021;23(5):e1134.

Google Scholar 

Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett. 2021;21(1):23. https://doi.org/10.3892/ol.2020.12284.

Article  CAS  PubMed  Google Scholar 

Peng Z, Zhang Y, Shi D, Jia Y, Shi H, Liu H. miR-497-5p/SALL4 axis promotes stemness phenotype of choriocarcinoma and forms a feedback loop with DNMT-mediated epigenetic regulation. Cell Death Dis. 2021;12(11):1046. https://doi.org/10.1038/s41419-021-04315-1.

Article  CAS  PubMed  Google Scholar 

Tang W, Jia P, Zuo L, Zhao J. Suppression of CX3CL1 by miR-497-5p inhibits cell growth and invasion through inactivating the ERK/AKT pathway in NSCLC cells. Cell Cycle. 2022;21(16):1697–709. https://doi.org/10.1080/15384101.2022.2067438.

Article  CAS  PubMed  Google Scholar 

Gao S, Ding B, Lou W. microRNA-dependent modulation of genes contributes to ESR1’s effect on ERα positive breast cancer. Front Oncol. 2020;10:545. https://doi.org/10.3389/fonc.2020.00753.

Article  Google Scholar 

Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10. https://doi.org/10.1111/j.1365-2559.1991.tb00229.x.

Article  CAS  PubMed  Google Scholar 

Zaki MA, Ahmed MA, El Mansy HME, Omer SM, Mohamed MAA. A low serum microRNA-497-5p expression level is associated with primary breast cancer among Egyptian female patients. J Arab Soc Med Res. 2023;18(1):93–9. https://doi.org/10.4103/jasmr.jasmr_34_22.

Article  Google Scholar 

Zhang Z, Zhou Y, Liang S. Correlation between miR-497-5p expression with clinicopathological characteristics and prognosis in patients with breast cancer. Appl Immunohistochem Mol Morphol. 2024;32(4):200–5. https://doi.org/10.1097/pai.0000000000001190.

Article  PubMed  Google Scholar 

Fridrichova I, Kalinkova L, Karhanek M, Smolkova B, Machalekova K, Wachsmannova L, et al. miR-497-5p decreased expression associated with high-risk endometrial cancer. Int J Mol Sci. 2021;22(1):12347..

Google Scholar 

Wang Y, Li J, Dai L, Zheng J, Yi Z, Chen L. MiR-17-5p May serve as a novel predictor for breast cancer recurrence. Cancer Biomark. 2018;22(4):721–6. https://doi.org/10.3233/cbm-181228.

Article  CAS  PubMed  Google Scholar 

Li H, Bian C, Liao L, Li J, Zhao RC. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat. 2011;126(3):565–75. https://doi.org/10.1007/s10549-010-0954-4.

Article  CAS  PubMed  Google Scholar 

Thankachan S, Bhardwaj BK, Venkatesh T, Suresh PS. Long Non-coding RNA NEAT1 as an emerging biomarker in breast and gynecologic cancers: a systematic overview. Reprod Sci. 2021;28(9):2436–47. https://doi.org/10.1007/s43032-021-00481-x.

Article  CAS  Google Scholar 

Howard EW, Yang X. MicroRNA regulation in estrogen receptor-positive breast cancer and endocrine therapy. Biol Proced Online. 2018;20:17. https://doi.org/10.1186/s12575-018-0082-9.

Article  CAS  Google Scholar 

Wang PY, Gong HT, Li BF, Lv CL, Wang HT, Zhou HH, et al. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett. 2013;6(6):1681–6. https://doi.org/10.3892/ol.2013.1593.

Article  CAS  PubMed  Google Scholar 

Liu Z, Ji M, Jin F, Jiang F, Liu X. Expression and clinical significance of miR-17-5p in tumor tissues of patients with colorectal cancer. J Gastrointest Oncol. 2022;13(6):3067–79. https://doi.org/10.21037/jgo-22-1185.

Article  PubMed  Google Scholar 

Lv S, Wang Y, Xu W, Dong X. Serum Exosomal miR-17-5p as a promising diagnostic biomarker for breast cancer. Clin Lab. 2020;66(9). https://doi.org/10.7754/clin.lab.2020.200127.

Zhou J, Song G, Su M, Zhang H, Yang T, Song Z. Long noncoding RNA CASC9 promotes pancreatic cancer progression by acting as a CeRNA of miR-497-5p to upregulate expression of CCND1. Environ Toxicol. 2023;38(6):1251–1264.

CAS  PubMed  Google Scholar 

Valla M, Klæstad E, Ytterhus B, Bofin AM. CCND1 amplification in breast cancer: associations with proliferation, histopathological grade, molecular subtype, and prognosis. J Mammary Gland Biol Neoplasia. 2022;27(1):67–77. https://doi.org/10.1007/s10911-022-09516-8.

Article  PubMed  Google Scholar 

Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang Y, et al. MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in S phase by targeting CBX4. Onco Targets Ther. 2019;12:10535–45. https://doi.org/10.2147/ott.s210059.

Article  CAS  PubMed  Google Scholar 

Zeng JS, Zhang ZD, Pei L, Bai ZZ, Yang Y, Yang H, et al. CBX4 exhibits oncogenic activities in breast cancer via Notch1 signaling. Int J Biochem Cell Biol. 2018;95:1–8. https://doi.org/10.1016/j.biocel.2017.12.006.

Article  CAS  PubMed  Google Scholar 

Tsang JYS, Ni YB, Chan SK, Shao MM, Kwok YK, Chan KW, et al. CX3CL1 expression is associated with poor outcome in breast cancer patients. Breast Cancer Res Treat. 2013;140(3):495–504. https://doi.org/10.1007/s10549-013-2653-4.

Article  CAS  PubMed  Google Scholar 

Song J, Liu Y, Wang T, Li B, Zhang S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed Pharmacother. 2020;128:110246. https://doi.org/10.1016/j.biopha.2020.110246.

Article  CAS  PubMed  Google Scholar 

Cai N, Hu L, Xie Y, Gao JH, Zhai W, Wang L, et al. MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-β receptor 2. Eur Rev Med Pharmacol Sci. 2018;22(7):1899–906. https://doi.org/10.26355/eurrev_201804_14712.

Article  CAS  PubMed  Google Scholar 

Wang M, Zhao M, Guo Q, Lou J, Wang L. Non-small cell lung cancer cell-derived Exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp Cell Res. 2021;408(1):112834. https://doi.org/10.1016/j.yexcr.2021.112834.

Article  CAS  PubMed  Google Scholar 

Xu Y, Tan X, Yang Q, Fang Z, Chen W. LncRNA HCG11 enhances the chemosensitivity of non-small cell lung cancer cells to gemcitabine via miR-17-5p/p21 axis. Expert Rev Anticancer Ther. 2024;24(1–2):81–93. https://doi.org/10.1080/14737140.2024.2305352.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif