Genetic Variation in the Receptor for Advanced Glycation End Product (1704G > T) and Matrix Metalloproteinase-9 (-1562 C/T) in Type 2 Diabetic Patients with Nephropathy in Western Rajasthan

Saha SK, Saifuddin MDM, Moni TT, Kadir MR, Haque A, Mithila ST. Diabetic nephropathy and its risk factors among patients with diabetes mellitus-an observational study. Int J Res Med Sci. 2023;11(5):1439–43. https://doi.org/10.18203/2320-6012.ijrms20231039.

Article  Google Scholar 

Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/CJN.11491116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satirapoj B, Adler SG. Comprehensive approach to diabetic nephropathy. Kidney Res Clin Pract. 2014;33(3):121–31. https://doi.org/10.1016/j.krcp.2014.08.001.

Article  PubMed  PubMed Central  Google Scholar 

Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33(4):499–512. https://doi.org/10.1007/s10719-016-9694-y.

Article  CAS  PubMed  Google Scholar 

Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222. https://doi.org/10.3390/biom5010194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 2016;20(4):431–46. https://doi.org/10.1517/14728222.2016.1111873.

Article  CAS  PubMed  Google Scholar 

Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, et al. Activation and modulation of the AGEs-RAGE axis: implications for inflammatory pathologies and therapeutic interventions – a review. Pharmacol Res. 2024;206: 107282. https://doi.org/10.1016/j.phrs.2024.107282.

Article  CAS  PubMed  Google Scholar 

Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc. 2019;3(10):1799–818. https://doi.org/10.1210/js.2019-00160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang P, Tian C, Jia C. Association of RAGE gene polymorphisms with type 2 diabetes mellitus, diabetic retinopathy and diabetic nephropathy. Gene. 2012;500(1):1–9. https://doi.org/10.1016/j.gene.2012.03.056. (PMID: 22475522).

Article  CAS  PubMed  Google Scholar 

Gajewska B, Śliwińska-Mossoń M. Association of MMP-2 and MMP-9 polymorphisms with diabetes and pathogenesis of diabetic complications. Int J Mol Sci. 2022;23(18): 10571. https://doi.org/10.3390/ijms231810571.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahluwalia TS, Khullar M, Ahuja M, Kohli HS, Bhansali A, Mohan V, et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS ONE. 2009;4(4): e5168. https://doi.org/10.1371/journal.pone.0005168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nachimuthu M, Kanwar T, Rathore M, Sreenivasulu K, Bajpai NK, Banerjee M. Genetic polymorphism of glyoxalase I gene (A419C and C-7 T) and nephropathy risk in patients with type 2 diabetes mellitus among north Indian population: a case-control study. Hum Gene. 2024;41: 201322. https://doi.org/10.1016/j.humgen.2024.201322.

Article  CAS  Google Scholar 

Marson BP, Lacchini R, Belo V, Mattos SG, da Costa BP, Poli-de-Figueiredo CE, et al. Functional matrix metalloproteinase (MMP)-9 genetic variants modify the effects of hemodialysis on circulating MMP-9 levels. Clin Chim Acta. 2012;414:46–51. https://doi.org/10.1016/j.cca.2012.08.014.

Article  CAS  PubMed  Google Scholar 

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51. https://doi.org/10.4103/2230-8210.183480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ratan Y, Rajput A, Pareek A, Pareek A, Singh G. Comprehending the role of metabolic and hemodynamic factors alongside different signaling pathways in the pathogenesis of diabetic nephropathy. Int J Mol Sci. 2025;26(7): 3330. https://doi.org/10.3390/ijms26073330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: an update. Life. 2023;13(2): 539. https://doi.org/10.3390/life13020539.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osanami A, Tanaka M, Furuhashi M, Ohnishi H, Hanawa N, Yamashita T, et al. Increased LDL-cholesterol level is associated with deterioration of renal function in males. Clin Kidney J. 2022;15(10):1888–95. https://doi.org/10.1093/ckj/sfac111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ueda Y, Ookawara S, Ito K, Miyazawa H, Kaku Y, Hoshino T, et al. Changes in urinary potassium excretion in patients with chronic kidney disease. Kidney Res Clin Pract. 2016;35(2):78–83. https://doi.org/10.1016/j.krcp.2016.02.001.

Article  PubMed  PubMed Central  Google Scholar 

Ronco P, Chatziantoniou C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int. 2008;74(7):873–8. https://doi.org/10.1038/ki.2008.349.

Article  CAS  PubMed  Google Scholar 

Shalaby K, Bahriz R, Mahsoub N, El-Arman MM, El-Said G. Matrix metalloproteinase-9 gene polymorphism (-1562 C/T) and its correlation with diabetic nephropathy. Egypt J Intern Med. 2021;33(1): 7. https://doi.org/10.1186/s43162-021-00035-2.

Article  Google Scholar 

Buraczynska M, Wrzos S, Zaluska W. MMP9 gene polymorphism (rs3918242) increases the risk of cardiovascular disease in type 2 diabetes patients. J Clin Med. 2023;12(22): 6990. https://doi.org/10.3390/jcm12226990.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Wu X, Cai T, Gao W, Zhou X, Zhao J, et al. Matrix metalloproteinase 9 gene promoter (rs 3918242) mutation reduces the risk of diabetic microvascular complications. Int J Environ Res Public Health. 2015;12(7):8023–33. https://doi.org/10.3390/ijerph120708023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci. 2011;1243:88–102. https://doi.org/10.1111/j.1749-6632.2011.06320.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanková K, Márová I, Záhejský J, Muzík J, Stejskalová A, Znojil V, et al. Polymorphisms 1704G/T and 2184A/G in the RAGE gene are associated with antioxidant status. Metabolism. 2001;50(10):1152–60. https://doi.org/10.1053/meta.2001.26757.

Article  PubMed  Google Scholar 

Zhang Y, Jia N, Hu F, Fan N, Guo X, Du H, et al. Association of single-nucleotide polymorphisms in the RAGE gene and its gene- environment interactions with diabetic nephropathy in Chinese patients with type 2 diabetes. Oncotarget. 2017;8(57):96885–92. https://doi.org/10.18632/oncotarget.18785.

Article  PubMed  PubMed Central  Google Scholar 

Cai W, Li J, Xu J-X, Liu Y, Zhang W, Xiao J-R, et al. Association of 2184AG polymorphism in the RAGE gene with diabetic nephropathy in Chinese patients with type 2 diabetes. J Diabetes Res. 2015;2015: 310237.

Comments (0)

No login
gif