Saha SK, Saifuddin MDM, Moni TT, Kadir MR, Haque A, Mithila ST. Diabetic nephropathy and its risk factors among patients with diabetes mellitus-an observational study. Int J Res Med Sci. 2023;11(5):1439–43. https://doi.org/10.18203/2320-6012.ijrms20231039.
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/CJN.11491116.
Article CAS PubMed PubMed Central Google Scholar
Satirapoj B, Adler SG. Comprehensive approach to diabetic nephropathy. Kidney Res Clin Pract. 2014;33(3):121–31. https://doi.org/10.1016/j.krcp.2014.08.001.
Article PubMed PubMed Central Google Scholar
Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33(4):499–512. https://doi.org/10.1007/s10719-016-9694-y.
Article CAS PubMed Google Scholar
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222. https://doi.org/10.3390/biom5010194.
Article CAS PubMed PubMed Central Google Scholar
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 2016;20(4):431–46. https://doi.org/10.1517/14728222.2016.1111873.
Article CAS PubMed Google Scholar
Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, et al. Activation and modulation of the AGEs-RAGE axis: implications for inflammatory pathologies and therapeutic interventions – a review. Pharmacol Res. 2024;206: 107282. https://doi.org/10.1016/j.phrs.2024.107282.
Article CAS PubMed Google Scholar
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.
Article CAS PubMed PubMed Central Google Scholar
Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc. 2019;3(10):1799–818. https://doi.org/10.1210/js.2019-00160.
Article CAS PubMed PubMed Central Google Scholar
Kang P, Tian C, Jia C. Association of RAGE gene polymorphisms with type 2 diabetes mellitus, diabetic retinopathy and diabetic nephropathy. Gene. 2012;500(1):1–9. https://doi.org/10.1016/j.gene.2012.03.056. (PMID: 22475522).
Article CAS PubMed Google Scholar
Gajewska B, Śliwińska-Mossoń M. Association of MMP-2 and MMP-9 polymorphisms with diabetes and pathogenesis of diabetic complications. Int J Mol Sci. 2022;23(18): 10571. https://doi.org/10.3390/ijms231810571.
Article CAS PubMed PubMed Central Google Scholar
Ahluwalia TS, Khullar M, Ahuja M, Kohli HS, Bhansali A, Mohan V, et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS ONE. 2009;4(4): e5168. https://doi.org/10.1371/journal.pone.0005168.
Article CAS PubMed PubMed Central Google Scholar
Nachimuthu M, Kanwar T, Rathore M, Sreenivasulu K, Bajpai NK, Banerjee M. Genetic polymorphism of glyoxalase I gene (A419C and C-7 T) and nephropathy risk in patients with type 2 diabetes mellitus among north Indian population: a case-control study. Hum Gene. 2024;41: 201322. https://doi.org/10.1016/j.humgen.2024.201322.
Marson BP, Lacchini R, Belo V, Mattos SG, da Costa BP, Poli-de-Figueiredo CE, et al. Functional matrix metalloproteinase (MMP)-9 genetic variants modify the effects of hemodialysis on circulating MMP-9 levels. Clin Chim Acta. 2012;414:46–51. https://doi.org/10.1016/j.cca.2012.08.014.
Article CAS PubMed Google Scholar
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51. https://doi.org/10.4103/2230-8210.183480.
Article CAS PubMed PubMed Central Google Scholar
Ratan Y, Rajput A, Pareek A, Pareek A, Singh G. Comprehending the role of metabolic and hemodynamic factors alongside different signaling pathways in the pathogenesis of diabetic nephropathy. Int J Mol Sci. 2025;26(7): 3330. https://doi.org/10.3390/ijms26073330.
Article CAS PubMed PubMed Central Google Scholar
Wu T, Ding L, Andoh V, Zhang J, Chen L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: an update. Life. 2023;13(2): 539. https://doi.org/10.3390/life13020539.
Article CAS PubMed PubMed Central Google Scholar
Osanami A, Tanaka M, Furuhashi M, Ohnishi H, Hanawa N, Yamashita T, et al. Increased LDL-cholesterol level is associated with deterioration of renal function in males. Clin Kidney J. 2022;15(10):1888–95. https://doi.org/10.1093/ckj/sfac111.
Article CAS PubMed PubMed Central Google Scholar
Ueda Y, Ookawara S, Ito K, Miyazawa H, Kaku Y, Hoshino T, et al. Changes in urinary potassium excretion in patients with chronic kidney disease. Kidney Res Clin Pract. 2016;35(2):78–83. https://doi.org/10.1016/j.krcp.2016.02.001.
Article PubMed PubMed Central Google Scholar
Ronco P, Chatziantoniou C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int. 2008;74(7):873–8. https://doi.org/10.1038/ki.2008.349.
Article CAS PubMed Google Scholar
Shalaby K, Bahriz R, Mahsoub N, El-Arman MM, El-Said G. Matrix metalloproteinase-9 gene polymorphism (-1562 C/T) and its correlation with diabetic nephropathy. Egypt J Intern Med. 2021;33(1): 7. https://doi.org/10.1186/s43162-021-00035-2.
Buraczynska M, Wrzos S, Zaluska W. MMP9 gene polymorphism (rs3918242) increases the risk of cardiovascular disease in type 2 diabetes patients. J Clin Med. 2023;12(22): 6990. https://doi.org/10.3390/jcm12226990.
Article CAS PubMed PubMed Central Google Scholar
Zhang Z, Wu X, Cai T, Gao W, Zhou X, Zhao J, et al. Matrix metalloproteinase 9 gene promoter (rs 3918242) mutation reduces the risk of diabetic microvascular complications. Int J Environ Res Public Health. 2015;12(7):8023–33. https://doi.org/10.3390/ijerph120708023.
Article CAS PubMed PubMed Central Google Scholar
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci. 2011;1243:88–102. https://doi.org/10.1111/j.1749-6632.2011.06320.x.
Article CAS PubMed PubMed Central Google Scholar
Kanková K, Márová I, Záhejský J, Muzík J, Stejskalová A, Znojil V, et al. Polymorphisms 1704G/T and 2184A/G in the RAGE gene are associated with antioxidant status. Metabolism. 2001;50(10):1152–60. https://doi.org/10.1053/meta.2001.26757.
Zhang Y, Jia N, Hu F, Fan N, Guo X, Du H, et al. Association of single-nucleotide polymorphisms in the RAGE gene and its gene- environment interactions with diabetic nephropathy in Chinese patients with type 2 diabetes. Oncotarget. 2017;8(57):96885–92. https://doi.org/10.18632/oncotarget.18785.
Article PubMed PubMed Central Google Scholar
Cai W, Li J, Xu J-X, Liu Y, Zhang W, Xiao J-R, et al. Association of 2184AG polymorphism in the RAGE gene with diabetic nephropathy in Chinese patients with type 2 diabetes. J Diabetes Res. 2015;2015: 310237.
Comments (0)