The Functional Role of Cumulus Cells and Their Influence on Oocyte Quality: A Systematic Review

Thoma ME, et al. Prevalence of infertility in the united States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril. 2013;99(5):1324–31. https://doi.org/10.1016/j.fertnstert.2012.11.037.

Article  PubMed  PubMed Central  Google Scholar 

Sirard M-A, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–36. https://doi.org/10.1016/j.theriogenology.2005.09.020.

Article  PubMed  Google Scholar 

Lasienë K, Vitkus A, Valanèiûtë A, Lasys V. Morphological criteria of oocyte quality. Med (B Aires). 2009;45(7):509.

Google Scholar 

Patounakis G, Hill MJ. The preimplantation genetic testing debate continues: first the hype, then the tension, now the hypertension? Fertil Steril. Aug. 2019;112(2):233–4. https://doi.org/10.1016/j.fertnstert.2019.04.028.

Turathum B, Gao E-M, Chian R-C. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021;10(9). https://doi.org/10.3390/cells10092292.

Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality, Hum Reprod Update. 2008;14(2):159–177. https://doi.org/10.1093/humupd/dmm040

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott Hosp Res Inst. 2011;2(1):1–12.

Google Scholar 

Cillo F, Brevini TAL, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134(5):645–50. https://doi.org/10.1530/REP-07-0182.

Article  CAS  PubMed  Google Scholar 

Scarica C, et al. An integrated investigation of oocyte developmental competence: expression of key genes in human cumulus cells, morphokinetics of early divisions, blastulation, and euploidy. J Assist Reprod Genet. 2019;36(5):875–87. https://doi.org/10.1007/s10815-019-01410-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKenzie LJ et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction. 2004;19(12):2869–2874. https://doi.org/10.1093/humrep/deh535

Shen Q, Chen M, Zhao X, Liu Y, Ren X, Zhang L. Versican expression level in cumulus cells is associated with human oocyte developmental competence. Syst Biol Reprod Med. 2020;66(3):176–84. https://doi.org/10.1080/19396368.2020.1725685.

Adriaenssens T, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod. 2010;25(5):1259–70. https://doi.org/10.1093/humrep/deq049.

Huang X et al. Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome, Int J Fertil Steril. 2014;8:36. https://www.embase.com/search/results?subaction=viewrecord%26id=L71786129%26from=export

Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality, Fertil Steril. 2005;83(4):1169–1179. https://doi.org/10.1016/j.fertnstert.2004.11.030

Shafienia H et al. Target gene repression mediated by miR-144 and miR-224 in cumulus cells is related to the success of oocyte in vitro maturation and fertilisation in patients with polycystic ovary syndrome (PCOS). Reprod Fertil Dev. 2022;34(17):1089–1098. https://doi.org/10.1071/RD22082

Allegra A, et al. The gene expression profile of cumulus cells reveals altered pathways in patients with endometriosis. J Assist Reprod Genet. 2014;31(10):1277–85. https://doi.org/10.1007/s10815-014-0305-1.

Article  PubMed  PubMed Central  Google Scholar 

Wyse BA, Fuchs Weizman N, Kadish S, Balakier H, Sangaralingam M, Librach CL. Transcriptomics of cumulus cells– a window into oocyte maturation in humans. J Ovarian Res. 2020;13(1):93. https://doi.org/10.1186/s13048-020-00696-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson RA, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to Establish a pregnancy. Reproduction. 2009;138(4):629–37. https://doi.org/10.1530/REP-09-0144.

Article  CAS  PubMed  Google Scholar 

Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence, Human Reproduction. 2007;22(12):3069–3077. https://doi.org/10.1093/humrep/dem336

Filali M, et al. Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reprod Biomed Online. 2009;19:71–84. https://doi.org/10.1016/S1472-6483(10)61071-1.

Article  Google Scholar 

Artini PG et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Human Reproduction. 2017;32(12):2474–2484. https://doi.org/10.1093/humrep/dex320

Haraguchi H, et al. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality. FASEB J. 2019;33(2):2610–20. https://doi.org/10.1096/fj.201801401R.

Li C-J, Lin L-T, Tsai H-W, Wen Z-H, Tsui K-H. Phosphoglycerate mutase family member 5 maintains oocyte quality via mitochondrial dynamic rearrangement during aging. Aging Cell. 2022;21(2):e13546. https://doi.org/10.1111/acel.13546.

Akino R, et al. Next-Generation sequencing reveals downregulation of the Wnt signaling pathway in human dysmature cumulus cells as a hallmark for evaluating oocyte quality. Reproductive Med. 2020;1(3):205–15. https://doi.org/10.3390/reprodmed1030016.

Article  Google Scholar 

Dumesic DA, et al. Cumulus cell mitochondrial resistance to stress in vitro predicts oocyte development during assisted reproduction. J Clin Endocrinol Metab. 2016;101(5):2235–45. https://doi.org/10.1210/jc.2016-1464.

Anderson SH, Glassner MJ, Melnikov A, Friedman G, Orynbayeva Z. Respirometric reserve capacity of cumulus cell mitochondria correlates with oocyte maturity. J Assist Reprod Genet. 2018;35(10):1821–30. https://doi.org/10.1007/s10815-018-1271-9.

Article  PubMed  PubMed Central  Google Scholar 

Kedem-Dickman A, et al. Anti-Müllerian hormone is highly expressed and secreted from cumulus granulosa cells of stimulated preovulatory immature and atretic oocytes. Reprod Biomed Online. 2012;24(5):540–6. https://doi.org/10.1016/j.rbmo.2012.01.023.

Article  CAS  PubMed  Google Scholar 

Dević Pavlić S et al. Genes for anti-Müllerian hormone and androgen receptor are underexpressed in human cumulus cells surrounding morphologically highly graded oocytes, SAGE Open Med. 2019;7:2050312119865137. https://doi.org/10.1177/2050312119865137

Anderson S, et al. Cumulus cell acetyl-CoA metabolism from acetate is associated with maternal age but only partially with oocyte maturity. Syst Biol Reprod Med. 2022;68(1):36–43. https://doi.org/10.1080/19396368.2021.2003479.

Maman E, et al. High expression of luteinizing hormone receptors messenger RNA by human cumulus granulosa cells is in correlation with decreased fertilization. Fertil Steril. 2012;97(3):592–8. https://doi.org/10.1016/j.fertnstert.2011.12.027.

Article  CAS  PubMed  Google Scholar 

Zhang Y et al. Resolvin E1 in follicular fluid acts as a potential biomarker and improves oocyte developmental competence by optimizing cumulus cells. Front Endocrinol (Lausanne). 2020;11. https://www.frontiersin.org/articles/

Suchanek E, Grizelj V, Kozaric Z, Simunic V, Casl M-T. Histochemical demonstration of a ∆5,3β-hydroxysteroid dehydrogenase activity of cumulus cells related to the maturity and developmental potential of recovered oocytes. Fertil Steril. 1990;54(5):873–8. https://doi.org/10.1016/S0015-0282(16)53949-1.

Article  CAS  PubMed  Google Scholar 

Baratas A, et al. Cumulus cell DNA damage as an index of human oocyte competence. Reproductive Sci. 2022;29(11):3194–200. https://doi.org/10.1007/s43032-021-00817-7.

Article  CAS  Google Scholar 

Bosco L, Chiarelli R, Roccheri MC, Matranga D, Ruvolo G. Relationship between apoptosis and survival molecules in human cumulus cells as markers of oocyte competence. Zygote. 2017;25(5):583–91. https://doi.org/10.1017/S0967199417000429.

Article  CAS  PubMed  Google Scholar 

Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril. 2005;84(3):627–33. https://doi.org/10.1016/j.fertnstert.2005.03.061.

Article  PubMed  Google Scholar 

Ghobadi N et al. Increased telomeric repeat containing RNA (TERRA) levels in cumulus cells of infertile polycystic ovary syndrome patients. Iran J Reproductive Med, pp. 75–75, 2015.

Thanaboonyawat I, Makemaharn O, Petyim S, Laokirkkiat P, Choavaratana R. The correlation of cumulus mucification patterns with oocyte maturation rate in vitro in FSH + LH-primed IVM cycles: a prospective study. Arch Gynecol Obstet. 2016;293(3):681–6. https://doi.org/10.1007/s00404-015-3935-3.

Article  PubMed  Google Scholar 

Leung PS, Lopata A, Kellow GN, Johnston WI, Gronow MJ. A histochemical study of cumulus cells for assessing the quality of preovulatory oocytes. Fertil Steril. 1983;39(6):853–855.

Murakawa H, et al. Morphological evaluation and measurement of the respiration activity of Cumulus-oocyte complexes to assess oocyte quality. J Mamm Ova Res. 2009;26(1):32–41.

Google Scholar 

Lourenço B, Sousa AP, Almeida-Santos T, Ramalho-Santos J. Relation of cumulus cell status with single oocyte maturity, fertilization capability and patient age. J Reprod Infertil. 2014;15(1):15–21.

PubMed  PubMed Central  Google Scholar 

Ribeiro A, et al. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J Assist Reprod Genet. 2017;34(9):1121–9. https://doi.org/10.1007/s10815-017-0930-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pacella-Ince L, Zander-Fox DL, Lane M. Mitochondrial SIRT3 and its target glutamate dehydrogenase are altered in follicular cells of women with reduced ovarian reserve or advanced maternal age. Human Reproduction. 2014;29(7):1490–1499. https://doi.org/10.1093/humrep/deu071

Al-Edani T et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int. 2014;2014.

Maraldi T, et al. NADPH oxidase-4 and MATER expressions in granulosa cells: relationships with ovarian aging. Life Sci. 2016;162:108–14. https://doi.org/10.1016/j.lfs.2016.08.007.

Article  CAS  PubMed  Google Scholar 

Molinari E, Bar H, Pyle AM, Patrizio P. Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence. Mol Hum Reprod. 2016;22(8):866–876.

Sun X, et al. The activated DNA double-strand break repair pathway in cumulus cells from aging patients May be used as a convincing predictor of poor outcomes after in vitro fertilization-embryo transfer treatment. PLoS ONE. 2018;13(9):e0204524.

PubMed  PubMed Central  Google Scholar 

Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Clinical assisted reproduction: cumulus cells apoptosis as an Indicator to predict the quality of oocytes and the outcome of IVF–ET. J Assist Reprod Genet. 2001;18(9):490–8.

Comments (0)

No login
gif