Zhai J, Vannuccini S, Petraglia F, et al. Adenomyosis: mechanisms and pathogenesis. Semin Reprod Med. 2020;38:129–43. https://doi.org/10.1055/s-0040-1716687.
Article CAS PubMed PubMed Central Google Scholar
Chao X, Chen X, Su H, et al. Whole genome doubling in adenomyosis. Clin Transl Med. 2024;14: e1809. https://doi.org/10.1002/ctm2.1809.
Article CAS PubMed PubMed Central Google Scholar
Zhai J, Li S, Sen S, et al. Transcriptomic analysis supports collective endometrial cell migration in the pathogenesis of adenomyosis. Reprod Biomed Online. 2022;45:519–30. https://doi.org/10.1016/j.rbmo.2022.05.007.
Article CAS PubMed PubMed Central Google Scholar
Bourdon M, Santulli P, Doridot L, et al. Immune cells and Notch1 signaling appear to drive the epithelial to mesenchymal transition in the development of adenomyosis in mice. Mol Hum Reprod. 2021;27:gaab053. https://doi.org/10.1093/molehr/gaab053.
Shi YX, Xu L, Wang X, et al. Paris polyphylla ethanol extract and polyphyllin I ameliorate adenomyosis by inhibiting epithelial-mesenchymal transition. Phytomedicine. 2024;127: 155461. https://doi.org/10.1016/j.phymed.2024.155461.
Article CAS PubMed Google Scholar
Qiu Y, Cao J, Li S, et al. Macrophage polarization in adenomyosis: A review. Am J Reprod Immunol. 2024;91: e13841. https://doi.org/10.1111/aji.13841.
Article CAS PubMed Google Scholar
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22:137–63. https://doi.org/10.1093/humupd/dmv051.
Article CAS PubMed Google Scholar
Chen YJ, Li HY, Chang YL, et al. Suppression of migratory/invasive ability and induction of apoptosis in adenomyosis-derived mesenchymal stem cells by cyclooxygenase-2 inhibitors. Fertil Steril. 2010;94:1972–9, 9 e1–4. https://doi.org/10.1016/j.fertnstert.2010.01.070.
Ren W, Hou J, Yang C, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38:62. https://doi.org/10.1186/s13046-019-1027-0.
Article PubMed PubMed Central Google Scholar
Juarez-Barber E, Segura-Benitez M, Carbajo-Garcia MC, et al. Extracellular vesicles secreted by adenomyosis endometrial organoids contain miRNAs involved in embryo implantation and pregnancy. Reprod Biomed Online. 2023;46:470–81. https://doi.org/10.1016/j.rbmo.2022.12.008.
Article CAS PubMed Google Scholar
Zhang F, Li F, Lu J. microRNA-100 shuttled by human umbilical cord MSC-secreted extracellular vesicles induces endometriosis by inhibiting HS3ST2. Cell Signal. 2023;102: 110532. https://doi.org/10.1016/j.cellsig.2022.110532.
Article CAS PubMed Google Scholar
Hu Y, Yuan M, Cheng L, et al. Extracellular vesicles contribute to EMT in adenomyosis by inducing macrophage polarizationdagger. Biol Reprod. 2023;108:584–96. https://doi.org/10.1093/biolre/ioad015.
Article CAS PubMed Google Scholar
Astrom M, Thet Lwin ZM, Teni FS, et al. Use of the visual analogue scale for health state valuation: a scoping review. Qual Life Res. 2023;32:2719–29. https://doi.org/10.1007/s11136-023-03411-3.
Article PubMed PubMed Central Google Scholar
Ko JKY, Lao TT, Cheung VYT. Pictorial Blood Loss Assessment Chart for evaluating heavy menstrual bleeding in Asian women. Hong Kong Med J. 2021;27:399–404. https://doi.org/10.12809/hkmj208743.
Zhang DY, Huang Y, Peng C, et al. Effect of dienogest treatment on uterine fibroid volume in patients with endometriosis or adenomyosis complicated by uterine fibroids. World J Clin Cases. 2024;12:4601–8. https://doi.org/10.12998/wjcc.v12.i21.4601.
Wei X, Xu A, Xia S, et al. Primary culture of endometrial mesenchymal stem cells derived from ectopic lesions of patients with adenomyosis. Arch Gynecol Obstet. 2024;310:3239–53. https://doi.org/10.1007/s00404-024-07854-y.
Article CAS PubMed Google Scholar
Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2019;9:1703244. https://doi.org/10.1080/20013078.2019.1703244.
Article CAS PubMed PubMed Central Google Scholar
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.
Article PubMed PubMed Central Google Scholar
Chen YJ, Li HY, Huang CH, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J Pathol. 2010;222:261–70. https://doi.org/10.1002/path.2761.
Article CAS PubMed Google Scholar
Huang TS, Chen YJ, Chou TY, et al. Oestrogen-induced angiogenesis promotes adenomyosis by activating the Slug-VEGF axis in endometrial epithelial cells. J Cell Mol Med. 2014;18:1358–71. https://doi.org/10.1111/jcmm.12300.
Article CAS PubMed PubMed Central Google Scholar
Zhou S, Yi T, Liu R, et al. Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol Cell Proteomics. 2012;11(M112): 017988. https://doi.org/10.1074/mcp.M112.017988.
Gui T, Liu M, Yao B, et al. TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer. Cell Death Differ. 2021;28:3316–28. https://doi.org/10.1038/s41418-021-00824-w.
Article CAS PubMed PubMed Central Google Scholar
An M, Li D, Yuan M, et al. Interaction of macrophages and endometrial cells induces epithelial-mesenchymal transition-like processes in adenomyosis. Biol Reprod. 2017;96:46–57. https://doi.org/10.1095/biolreprod.116.144071.
Kay N, Huang CY, Shiu LY, et al. The effects of anti-TGF-beta1 on epithelial-mesenchymal transition in the pathogenesis of adenomyosis. Reprod Sci. 2020;27:1698–706. https://doi.org/10.1007/s43032-020-00139-0.
Article CAS PubMed Google Scholar
Isaac R, Reis FCG, Ying W, et al. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62. https://doi.org/10.1016/j.cmet.2021.08.006.
Article CAS PubMed PubMed Central Google Scholar
Liu H, Wang L, Shi X, et al. Calcium saccharate/DUSP6 suppresses renal cell carcinoma glycolytic metabolism and boosts sunitinib efficacy via the ERK-AKT pathway. Biochem Pharmacol. 2024;224: 116247. https://doi.org/10.1016/j.bcp.2024.116247.
Article CAS PubMed Google Scholar
Kato M, Onoyama I, Yoshida S, et al. Dual-specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem-like cell phenotype in human endometrial cancer. Int J Cancer. 2020;147:1987–99. https://doi.org/10.1002/ijc.32965.
Article CAS PubMed PubMed Central Google Scholar
Qiu S, Xie L, Lu C, et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin Cancer Res. 2022;41:296. https://doi.org/10.1186/s13046-022-02499-8.
Article CAS PubMed PubMed Central Google Scholar
Yang Z, Huang D, Meng M, et al. BAF53A drives colorectal cancer development by regulating DUSP5-mediated ERK phosphorylation. Cell Death Dis. 2022;13:1049. https://doi.org/10.1038/s41419-022-05499-w.
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Yuan M, Cheng L, et al. Extracellular vesicle-encapsulated miR-25–3p promotes epithelial-mesenchymal transition and migration of endometrial epithelial cells by inducing macrophage polarization. Mol Hum Reprod. 2024;30:gaae010. https://doi.org/10.1093/molehr/gaae010.
Hazrati A, Malekpour K, Mirsanei Z, et al. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol. 2023;14:1280601. https://doi.org/10.3389/fimmu.2023.1280601.
Comments (0)