Björkqvist, M., Wild, E. J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., Raibon, E., Lee, R. V., Benn, C. L., Soulet, D., & Magnusson, A. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. The Journal of Experimental Medicine, 205(8), 1869–1877.
Article PubMed PubMed Central Google Scholar
Chauhan, P., & Sheng, W. S. (2021). Differential cytokine-induced responses of polarized microglia. Brain Sciences, 11(11), 1482.
Article CAS PubMed PubMed Central Google Scholar
Dal Bianco, A., Bradl, M., Frischer, J., Kutzelnigg, A., Jellinger, K., & Lassmann, H. (2008). Multiple sclerosis and Alzheimer’s disease. Annals of Neurology, 63(2), 174–183.
Dalrymple, A., Wild, E. J., Joubert, R., Sathasivam, K., Björkqvist, M., Petersén, Å., Jackson, G. S., Isaacs, J. D., Kristiansen, M., Bates, G. P., & Leavitt, B. R. (2007). Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. Journal of Proteome Research, 6(7), 2833–2840.
Article CAS PubMed Google Scholar
Doorn, K. J., Moors, T., Drukarch, B., van de Berg, W., Lucassen, P. J., & van Dam, A. M. (2014). Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathologica Communications, 2, 90.
PubMed PubMed Central Google Scholar
Fan, Z., Aman, Y., Ahmed, I., Chetelat, G., Landeau, B., Ray Chaudhuri, K., Brooks, D. J., & Edison, P. (2015). Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimer’s & Dementia: THe Journal of the Alzheimer’s Association, 11(6), 608-621.e607.
Feng, X. H., Yuan, W., Peng, Y., Liu, M. S., & Cui, L. Y. (2012). Therapeutic effects of dl-3-n-butylphthalide in a transgenic mouse model of amyotrophic lateral sclerosis. Chinese Medical Journal, 125(10), 1760–1766.
Franco, R., & Fernández-Suárez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 131, 65–86.
Article CAS PubMed Google Scholar
Gao, C., Jiang, J., Tan, Y., & Chen, S. (2023). Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 359.
Article PubMed PubMed Central Google Scholar
Geng, J., Liu, G. Y., Ma, S., et al. (2021). Effect and mechanism of treating experimental autoimmune encephalomyelitis in mice with butylphthalide combined with bone marrow mesenchymal stem cells. Journal of Sichuan University (Medical Sciences), 52(5), 759–766.
Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R. B., & Brooks, D. J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiology of Disease, 21(2), 404–412.
Article CAS PubMed Google Scholar
Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.
Article CAS PubMed Google Scholar
He, Q., Wang, Q., Yuan, C., & Wang, Y. (2017). Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-α production to induce dopaminergic neuron damage. Glia, 65(8), 1251–1263.
Hunot, S., Boissière, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 72(2), 355–363.
Article CAS PubMed Google Scholar
Jackson-Lewis, V., & Przedborski, S. (2007). Protocol for the MPTP mouse model of Parkinson’s disease. Nature Protocols, 2(1), 141–151.
Article CAS PubMed Google Scholar
Janda, E., Boi, L., & Carta, A. R. (2018). Microglial phagocytosis and its regulation: A therapeutic target in Parkinson’s disease? Frontiers in Molecular Neuroscience, 11, 144.
Article PubMed PubMed Central Google Scholar
Kawano, A., & Ariyoshi, W. (2019). Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. Journal of Cellular Biochemistry, 120(8), 12604–12617.
Article CAS PubMed Google Scholar
Knott, C., Stern, G., & Wilkin, G. P. (2000). Inflammatory regulators in Parkinson’s disease: INOS, lipocortin-1, and cyclooxygenases-1 and -2. Molecular and Cellular Neurosciences, 16(6), 724–739.
Article CAS PubMed Google Scholar
Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Translational Neurodegeneration, 9(1), 42.
Article PubMed PubMed Central Google Scholar
Li, F., Ma, Q., Zhao, H., Wang, R., Tao, Z., Fan, Z., Zhang, S., Li, G., & Luo, Y. (2018). L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metabolic Brain Disease, 33(6), 1995–2003.
Article CAS PubMed PubMed Central Google Scholar
Liu, B., & Hong, J. S. (2003). Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. The Journal of Pharmacology and Experimental Therapeutics, 304(1), 1–7.
Article CAS PubMed Google Scholar
Luchtman, D. W., Shao, D., & Song, C. (2009). Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiology & Behavior, 98(1–2), 130–138.
McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38(8), 1285–1291.
Article CAS PubMed Google Scholar
Mustapha, M., & Mat Taib, C. N. (2021). MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences, 21(4), 422–433.
CAS PubMed PubMed Central Google Scholar
Nagatsu, T., & Sawada, M. (2005). Inflammatory process in Parkinson’s disease: Role for cytokines. Current Pharmaceutical Design, 11(8), 999–1016.
Article CAS PubMed Google Scholar
Ona, V. O., Li, M., Vonsattel, J. P. G., Andrews, L. J., Khan, S. Q., Chung, W. M., Frey, A. S., Menon, A. S., Li, X. J., Stieg, P. E., & Yuan, J. (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 399(6733), 263–267.
Article CAS PubMed Google Scholar
Sastre, M., Klockgether, T., & Heneka, M. T. (2006). Contribution of inflammatory processes to Alzheimer’s disease: Molecular mechanisms. International Journal of Developmental Neuroscience : THe Official Journal of the International Society for Developmental Neuroscience, 24(2–3), 167–176.
Article CAS PubMed Google Scholar
Singhrao, S. K., Neal, J. W., Morgan, B. P., & Gasque, P. (1999). Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Experimental Neurology, 159(2), 362–376.
Article CAS PubMed Google Scholar
Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20.
Article CAS PubMed Google Scholar
Tai, Y. F., Pavese, N., Gerhard, A., Tabrizi, S. J., Barker, R. A., Brooks, D. J., & Piccini, P. (2007). Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain: A Journal of Neurology, 130(Pt 7), 1759–1766.
Taverna, S., Cammarata, G., Colomba, P., Sciarrino, S., Zizzo, C., Francofonte, D., Zora, M., Scalia, S., Brando, C., Curto, A. L., & Marsana, E. M. (2020). Pompe disease: Pathogenesis, molecular genetics and diagnosis. Aging, 12(15), 15856–15874.
Comments (0)