Improvement of Parkinson’s Disease Symptoms by Butylphthalide Through Modulation of Microglial Activation

Björkqvist, M., Wild, E. J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., Raibon, E., Lee, R. V., Benn, C. L., Soulet, D., & Magnusson, A. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. The Journal of Experimental Medicine, 205(8), 1869–1877.

Article  PubMed  PubMed Central  Google Scholar 

Chauhan, P., & Sheng, W. S. (2021). Differential cytokine-induced responses of polarized microglia. Brain Sciences, 11(11), 1482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dal Bianco, A., Bradl, M., Frischer, J., Kutzelnigg, A., Jellinger, K., & Lassmann, H. (2008). Multiple sclerosis and Alzheimer’s disease. Annals of Neurology, 63(2), 174–183.

Article  Google Scholar 

Dalrymple, A., Wild, E. J., Joubert, R., Sathasivam, K., Björkqvist, M., Petersén, Å., Jackson, G. S., Isaacs, J. D., Kristiansen, M., Bates, G. P., & Leavitt, B. R. (2007). Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. Journal of Proteome Research, 6(7), 2833–2840.

Article  CAS  PubMed  Google Scholar 

Doorn, K. J., Moors, T., Drukarch, B., van de Berg, W., Lucassen, P. J., & van Dam, A. M. (2014). Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathologica Communications, 2, 90.

PubMed  PubMed Central  Google Scholar 

Fan, Z., Aman, Y., Ahmed, I., Chetelat, G., Landeau, B., Ray Chaudhuri, K., Brooks, D. J., & Edison, P. (2015). Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimer’s & Dementia: THe Journal of the Alzheimer’s Association, 11(6), 608-621.e607.

Article  Google Scholar 

Feng, X. H., Yuan, W., Peng, Y., Liu, M. S., & Cui, L. Y. (2012). Therapeutic effects of dl-3-n-butylphthalide in a transgenic mouse model of amyotrophic lateral sclerosis. Chinese Medical Journal, 125(10), 1760–1766.

CAS  PubMed  Google Scholar 

Franco, R., & Fernández-Suárez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 131, 65–86.

Article  CAS  PubMed  Google Scholar 

Gao, C., Jiang, J., Tan, Y., & Chen, S. (2023). Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 359.

Article  PubMed  PubMed Central  Google Scholar 

Geng, J., Liu, G. Y., Ma, S., et al. (2021). Effect and mechanism of treating experimental autoimmune encephalomyelitis in mice with butylphthalide combined with bone marrow mesenchymal stem cells. Journal of Sichuan University (Medical Sciences), 52(5), 759–766.

PubMed  Google Scholar 

Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R. B., & Brooks, D. J. (2006). In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiology of Disease, 21(2), 404–412.

Article  CAS  PubMed  Google Scholar 

Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.

Article  CAS  PubMed  Google Scholar 

He, Q., Wang, Q., Yuan, C., & Wang, Y. (2017). Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-α production to induce dopaminergic neuron damage. Glia, 65(8), 1251–1263.

Article  PubMed  Google Scholar 

Hunot, S., Boissière, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience, 72(2), 355–363.

Article  CAS  PubMed  Google Scholar 

Jackson-Lewis, V., & Przedborski, S. (2007). Protocol for the MPTP mouse model of Parkinson’s disease. Nature Protocols, 2(1), 141–151.

Article  CAS  PubMed  Google Scholar 

Janda, E., Boi, L., & Carta, A. R. (2018). Microglial phagocytosis and its regulation: A therapeutic target in Parkinson’s disease? Frontiers in Molecular Neuroscience, 11, 144.

Article  PubMed  PubMed Central  Google Scholar 

Kawano, A., & Ariyoshi, W. (2019). Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. Journal of Cellular Biochemistry, 120(8), 12604–12617.

Article  CAS  PubMed  Google Scholar 

Knott, C., Stern, G., & Wilkin, G. P. (2000). Inflammatory regulators in Parkinson’s disease: INOS, lipocortin-1, and cyclooxygenases-1 and -2. Molecular and Cellular Neurosciences, 16(6), 724–739.

Article  CAS  PubMed  Google Scholar 

Kwon, H. S., & Koh, S. H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Translational Neurodegeneration, 9(1), 42.

Article  PubMed  PubMed Central  Google Scholar 

Li, F., Ma, Q., Zhao, H., Wang, R., Tao, Z., Fan, Z., Zhang, S., Li, G., & Luo, Y. (2018). L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metabolic Brain Disease, 33(6), 1995–2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, B., & Hong, J. S. (2003). Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. The Journal of Pharmacology and Experimental Therapeutics, 304(1), 1–7.

Article  CAS  PubMed  Google Scholar 

Luchtman, D. W., Shao, D., & Song, C. (2009). Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiology & Behavior, 98(1–2), 130–138.

Article  CAS  Google Scholar 

McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38(8), 1285–1291.

Article  CAS  PubMed  Google Scholar 

Mustapha, M., & Mat Taib, C. N. (2021). MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences, 21(4), 422–433.

CAS  PubMed  PubMed Central  Google Scholar 

Nagatsu, T., & Sawada, M. (2005). Inflammatory process in Parkinson’s disease: Role for cytokines. Current Pharmaceutical Design, 11(8), 999–1016.

Article  CAS  PubMed  Google Scholar 

Ona, V. O., Li, M., Vonsattel, J. P. G., Andrews, L. J., Khan, S. Q., Chung, W. M., Frey, A. S., Menon, A. S., Li, X. J., Stieg, P. E., & Yuan, J. (1999). Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature, 399(6733), 263–267.

Article  CAS  PubMed  Google Scholar 

Sastre, M., Klockgether, T., & Heneka, M. T. (2006). Contribution of inflammatory processes to Alzheimer’s disease: Molecular mechanisms. International Journal of Developmental Neuroscience : THe Official Journal of the International Society for Developmental Neuroscience, 24(2–3), 167–176.

Article  CAS  PubMed  Google Scholar 

Singhrao, S. K., Neal, J. W., Morgan, B. P., & Gasque, P. (1999). Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Experimental Neurology, 159(2), 362–376.

Article  CAS  PubMed  Google Scholar 

Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20.

Article  CAS  PubMed  Google Scholar 

Tai, Y. F., Pavese, N., Gerhard, A., Tabrizi, S. J., Barker, R. A., Brooks, D. J., & Piccini, P. (2007). Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain: A Journal of Neurology, 130(Pt 7), 1759–1766.

Article  PubMed  Google Scholar 

Taverna, S., Cammarata, G., Colomba, P., Sciarrino, S., Zizzo, C., Francofonte, D., Zora, M., Scalia, S., Brando, C., Curto, A. L., & Marsana, E. M. (2020). Pompe disease: Pathogenesis, molecular genetics and diagnosis. Aging, 12(15), 15856–15874.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif