Protective Effect of the LRRK2 Kinase Inhibition in Human Fibroblasts Bearing the Genetic Variant GBA1 K198E: Implications for Parkinson’s Disease

Absalyamova, M., Traktirov, D., Burdinskaya, V., Artemova, V., Muruzheva, Z., & Karpenko, M. (2025). Molecular basis of the development of Parkinson’s disease. Neuroscience, 565, 292–300. https://doi.org/10.1016/j.neuroscience.2024.12.009

Article  CAS  PubMed  Google Scholar 

Alessi, D. R., & Pfeffer, S. R. (2024). Leucine-rich repeat kinases. Annu Rev Biochem, 93, 261–287. https://doi.org/10.1146/annurev-biochem-030122-051144

Article  CAS  PubMed  Google Scholar 

Angeles, D. C., Gan, B. H., Onstead, L., Zhao, Y., Lim, K. L., Dachsel, J., Melrose, H., Farrer, M., Wszolek, Z. K., Dickson, D. W., & Tan, E. K. (2011). Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 32(12), 1390–1397. https://doi.org/10.1002/humu.21582

Article  CAS  PubMed  Google Scholar 

Baden, P., Perez, M. J., Raji, H., Bertoli, F., Kalb, S., Illescas, M., Spanos, F., Giuliano, C., Calogero, A. M., Oldrati, M., & Hebestreit, H. (2023). Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nature Communications, 14(1), 1930. https://doi.org/10.1038/s41467-023-37454-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berwick, D. C., Heaton, G. R., Azeggagh, S., & Harvey, K. (2019). LRRK2 Biology from structure to dysfunction: Research progresses, but the themes remain the same. Molecular Neurodegeneration, 14(1), 49. https://doi.org/10.1186/s13024-019-0344-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee, D., & Krainc, D. (2023). Mechanisms of glucocerebrosidase dysfunction in Parkinson’s Disease. Journal of Molecular Biology, 435(12), 168023. https://doi.org/10.1016/j.jmb.2023.168023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daher, J. P., Abdelmotilib, H. A., Hu, X., Volpicelli-Daley, L. A., Moehle, M. S., Fraser, K. B., Needle, E., Chen, Y., Steyn, S. J., Galatsis, P., & Hirst, W. D. (2015). Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. Journal of Biological Chemistry, 290(32), 19433–19444. https://doi.org/10.1074/jbc.M115.660001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Day, J. O., & Mullin, S. (2021). The genetics of Parkinson’s disease and implications for clinical practice. Genes, 12, 1006. https://doi.org/10.3390/genes12071006

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Brito, M. L., Davanzo, G. G., de Aguiar, C. F., & Moraes-Vieira, P. M. (2020). Using flow cytometry for mitochondrial assays. MethodsX, 7, 100938. https://doi.org/10.1016/j.mex.2020.100938

Article  CAS  Google Scholar 

den Heijer, J. M., Kruithof, A. C., Moerland, M., Walker, M., Dudgeon, L., Justman, C., Solomini, I., Splitalny, L., Leymarie, N., Khatri, K., & Cullen, V. C. (2023). A phase 1B trial in GBA1-associated Parkinson’s disease of BIA-28-6156, a glucocerebrosidase activator. Movement Disorders, 38(7), 1197–1208. https://doi.org/10.1002/mds.29346

Article  CAS  Google Scholar 

Deus, C. M., Pereira, S. P., Cunha-Oliveira, T., Pereira, F. B., Raimundo, N., & Oliveira, P. J. (2020). Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson’s disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2019.165615

Article  PubMed  Google Scholar 

Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., & Sussman, J. L. (2003). X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Reports, 4(7), 704–709. https://doi.org/10.1038/sj.embor.embor873

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dzamko, N., Inesta-Vaquera, F., Zhang, J., Xie, C., Cai, H., Arthur, S., Tan, L., Choi, H., Gray, N., Cohen, P., & Pedrioli, P. (2012). The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during toll-like receptor signaling. PLoS ONE, 7(6), e39132. https://doi.org/10.1371/journal.pone.0039132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelhardt, E., da Gomes, M., & M. (2017). Lewy and his inclusion bodies: Discovery and rejection. Dementia & Neuropsychologia, 11(2), 198–201. https://doi.org/10.1590/1980-57642016dn11-020012

Article  Google Scholar 

Forno, L. S. (1996). Neuropathology of Parkinson’s disease. Journal of Neuropathology & Experimental Neurology, 55, 259–272. https://doi.org/10.1097/00005072-199603000-00001

Article  CAS  Google Scholar 

Funayama, M., Nishioka, K., Li, Y., & Hattori, N. (2023). Molecular genetics of Parkinson’s disease: Contributions and global trends. Journal of Human Genetics, 68(3), 125–130. https://doi.org/10.1038/s10038-022-01058-5

Article  PubMed  Google Scholar 

Goedert, M., Spillantini, M. G., Del Tredici, K., & Braak, H. (2013). 100 years of Lewy pathology. Nature Reviews Neurology, 9(1), 13–24. https://doi.org/10.1038/nrneurol.2012.242

Article  CAS  PubMed  Google Scholar 

Henderson, J. L., Kormos, B. L., Hayward, M. M., Coffman, K. J., Jasti, J., Kurumbail, R. G., Wager, T. T., Verhoest, P. R., Noell, G. S., Chen, Y., & Needle, E. (2015). Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. Journal of Medicinal Chemistry, 58(1), 419–432. https://doi.org/10.1021/jm5014055

Article  CAS  PubMed  Google Scholar 

Heo, H. Y., Park, J.-M., Kim, C.-H., Han, B. S., Kim, K.-S., & Seol, W. (2010). LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Experimental Cell Research, 316(4), 649–656. https://doi.org/10.1016/j.yexcr.2009.09.014

Article  CAS  PubMed  Google Scholar 

Horowitz, M., Wilder, S., Horowitz, Z., Reiner, O., Gelbart, T., & Beutler, E. (1989). The human glucocerebrosidase gene and pseudogene: Structure and evolution. Genomics, 4(1), 87–96. https://doi.org/10.1016/0888-7543(89)90319-4

Article  CAS  PubMed  Google Scholar 

Hu, J., Zhang, D., Tian, K., Ren, C., Li, H., Lin, C., Huang, X., Liu, J., Mao, W., & Zhang, J. (2023). Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. European Journal of Medicinal Chemistry, 256, 115475. https://doi.org/10.1016/j.ejmech.2023.115475

Article  CAS  PubMed  Google Scholar 

Ilieva, N. M., Hoffman, E. K., Ghalib, M. A., Greenamyre, J. T., & De Miranda, B. R. (2024). LRRK2 kinase inhibition protects against Parkinson’s disease-associated environmental toxicants. Neurobiology of Disease, 196, 106522. https://doi.org/10.1016/j.nbd.2024.106522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito, G., Katsemonova, K., Tonelli, F., Lis, P., Baptista, M. A., Shpiro, N., Duddy, G., Wilson, S., Ho, P. W., Ho, S. L., & Reith, A. D. (2016). Phos-tag analysis of Rab10 phosphorylation by LRRK2: A powerful assay for assessing kinase function and inhibitors. Biochemical Journal, 473(17), 2671–2685. https://doi.org/10.1042/BCJ20160557

Article  CAS  PubMed  Google Scholar 

Jennings, D., Huntwork-Rodriguez, S., Henry, A. G., Sasaki, J. C., Meisner, R., Diaz, D., et al. (2022). Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson’s disease. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.abj2658

Article  PubMed  Google Scholar 

Kamikawaji, S., Ito, G., & Iwatsubo, T. (2009). Identification of the autophosphorylation sites of LRRK2. Biochemistry, 48(46), 10963–10975. https://doi.org/10.1021/bi9011379

Article  CAS  PubMed  Google Scholar 

Kania, E., Long, J. S., McEwan, D. G., Welkenhuyzen, K., La Rovere, R., Luyten, T., et al. (2023). LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/Rab10-dependent manner. Cell Death and Disease, 14(7), 436. https://doi.org/10.1038/s41419-023-05964-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kingwell, K. (2023). LRRK2-targeted Parkinson disease drug advances into phase III. Nature Reviews Drug Discovery, 22(1), 3–5. https://doi.org/10.1038/d41573-022-00212-0

Comments (0)

No login
gif