Absalyamova, M., Traktirov, D., Burdinskaya, V., Artemova, V., Muruzheva, Z., & Karpenko, M. (2025). Molecular basis of the development of Parkinson’s disease. Neuroscience, 565, 292–300. https://doi.org/10.1016/j.neuroscience.2024.12.009
Article CAS PubMed Google Scholar
Alessi, D. R., & Pfeffer, S. R. (2024). Leucine-rich repeat kinases. Annu Rev Biochem, 93, 261–287. https://doi.org/10.1146/annurev-biochem-030122-051144
Article CAS PubMed Google Scholar
Angeles, D. C., Gan, B. H., Onstead, L., Zhao, Y., Lim, K. L., Dachsel, J., Melrose, H., Farrer, M., Wszolek, Z. K., Dickson, D. W., & Tan, E. K. (2011). Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 32(12), 1390–1397. https://doi.org/10.1002/humu.21582
Article CAS PubMed Google Scholar
Baden, P., Perez, M. J., Raji, H., Bertoli, F., Kalb, S., Illescas, M., Spanos, F., Giuliano, C., Calogero, A. M., Oldrati, M., & Hebestreit, H. (2023). Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nature Communications, 14(1), 1930. https://doi.org/10.1038/s41467-023-37454-4
Article CAS PubMed PubMed Central Google Scholar
Berwick, D. C., Heaton, G. R., Azeggagh, S., & Harvey, K. (2019). LRRK2 Biology from structure to dysfunction: Research progresses, but the themes remain the same. Molecular Neurodegeneration, 14(1), 49. https://doi.org/10.1186/s13024-019-0344-2
Article CAS PubMed PubMed Central Google Scholar
Chatterjee, D., & Krainc, D. (2023). Mechanisms of glucocerebrosidase dysfunction in Parkinson’s Disease. Journal of Molecular Biology, 435(12), 168023. https://doi.org/10.1016/j.jmb.2023.168023
Article CAS PubMed PubMed Central Google Scholar
Daher, J. P., Abdelmotilib, H. A., Hu, X., Volpicelli-Daley, L. A., Moehle, M. S., Fraser, K. B., Needle, E., Chen, Y., Steyn, S. J., Galatsis, P., & Hirst, W. D. (2015). Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. Journal of Biological Chemistry, 290(32), 19433–19444. https://doi.org/10.1074/jbc.M115.660001
Article CAS PubMed PubMed Central Google Scholar
Day, J. O., & Mullin, S. (2021). The genetics of Parkinson’s disease and implications for clinical practice. Genes, 12, 1006. https://doi.org/10.3390/genes12071006
Article CAS PubMed PubMed Central Google Scholar
de Brito, M. L., Davanzo, G. G., de Aguiar, C. F., & Moraes-Vieira, P. M. (2020). Using flow cytometry for mitochondrial assays. MethodsX, 7, 100938. https://doi.org/10.1016/j.mex.2020.100938
den Heijer, J. M., Kruithof, A. C., Moerland, M., Walker, M., Dudgeon, L., Justman, C., Solomini, I., Splitalny, L., Leymarie, N., Khatri, K., & Cullen, V. C. (2023). A phase 1B trial in GBA1-associated Parkinson’s disease of BIA-28-6156, a glucocerebrosidase activator. Movement Disorders, 38(7), 1197–1208. https://doi.org/10.1002/mds.29346
Deus, C. M., Pereira, S. P., Cunha-Oliveira, T., Pereira, F. B., Raimundo, N., & Oliveira, P. J. (2020). Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson’s disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2019.165615
Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., & Sussman, J. L. (2003). X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Reports, 4(7), 704–709. https://doi.org/10.1038/sj.embor.embor873
Article CAS PubMed PubMed Central Google Scholar
Dzamko, N., Inesta-Vaquera, F., Zhang, J., Xie, C., Cai, H., Arthur, S., Tan, L., Choi, H., Gray, N., Cohen, P., & Pedrioli, P. (2012). The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during toll-like receptor signaling. PLoS ONE, 7(6), e39132. https://doi.org/10.1371/journal.pone.0039132
Article CAS PubMed PubMed Central Google Scholar
Engelhardt, E., da Gomes, M., & M. (2017). Lewy and his inclusion bodies: Discovery and rejection. Dementia & Neuropsychologia, 11(2), 198–201. https://doi.org/10.1590/1980-57642016dn11-020012
Forno, L. S. (1996). Neuropathology of Parkinson’s disease. Journal of Neuropathology & Experimental Neurology, 55, 259–272. https://doi.org/10.1097/00005072-199603000-00001
Funayama, M., Nishioka, K., Li, Y., & Hattori, N. (2023). Molecular genetics of Parkinson’s disease: Contributions and global trends. Journal of Human Genetics, 68(3), 125–130. https://doi.org/10.1038/s10038-022-01058-5
Goedert, M., Spillantini, M. G., Del Tredici, K., & Braak, H. (2013). 100 years of Lewy pathology. Nature Reviews Neurology, 9(1), 13–24. https://doi.org/10.1038/nrneurol.2012.242
Article CAS PubMed Google Scholar
Henderson, J. L., Kormos, B. L., Hayward, M. M., Coffman, K. J., Jasti, J., Kurumbail, R. G., Wager, T. T., Verhoest, P. R., Noell, G. S., Chen, Y., & Needle, E. (2015). Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. Journal of Medicinal Chemistry, 58(1), 419–432. https://doi.org/10.1021/jm5014055
Article CAS PubMed Google Scholar
Heo, H. Y., Park, J.-M., Kim, C.-H., Han, B. S., Kim, K.-S., & Seol, W. (2010). LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Experimental Cell Research, 316(4), 649–656. https://doi.org/10.1016/j.yexcr.2009.09.014
Article CAS PubMed Google Scholar
Horowitz, M., Wilder, S., Horowitz, Z., Reiner, O., Gelbart, T., & Beutler, E. (1989). The human glucocerebrosidase gene and pseudogene: Structure and evolution. Genomics, 4(1), 87–96. https://doi.org/10.1016/0888-7543(89)90319-4
Article CAS PubMed Google Scholar
Hu, J., Zhang, D., Tian, K., Ren, C., Li, H., Lin, C., Huang, X., Liu, J., Mao, W., & Zhang, J. (2023). Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. European Journal of Medicinal Chemistry, 256, 115475. https://doi.org/10.1016/j.ejmech.2023.115475
Article CAS PubMed Google Scholar
Ilieva, N. M., Hoffman, E. K., Ghalib, M. A., Greenamyre, J. T., & De Miranda, B. R. (2024). LRRK2 kinase inhibition protects against Parkinson’s disease-associated environmental toxicants. Neurobiology of Disease, 196, 106522. https://doi.org/10.1016/j.nbd.2024.106522
Article CAS PubMed PubMed Central Google Scholar
Ito, G., Katsemonova, K., Tonelli, F., Lis, P., Baptista, M. A., Shpiro, N., Duddy, G., Wilson, S., Ho, P. W., Ho, S. L., & Reith, A. D. (2016). Phos-tag analysis of Rab10 phosphorylation by LRRK2: A powerful assay for assessing kinase function and inhibitors. Biochemical Journal, 473(17), 2671–2685. https://doi.org/10.1042/BCJ20160557
Article CAS PubMed Google Scholar
Jennings, D., Huntwork-Rodriguez, S., Henry, A. G., Sasaki, J. C., Meisner, R., Diaz, D., et al. (2022). Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson’s disease. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.abj2658
Kamikawaji, S., Ito, G., & Iwatsubo, T. (2009). Identification of the autophosphorylation sites of LRRK2. Biochemistry, 48(46), 10963–10975. https://doi.org/10.1021/bi9011379
Article CAS PubMed Google Scholar
Kania, E., Long, J. S., McEwan, D. G., Welkenhuyzen, K., La Rovere, R., Luyten, T., et al. (2023). LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/Rab10-dependent manner. Cell Death and Disease, 14(7), 436. https://doi.org/10.1038/s41419-023-05964-0
Article CAS PubMed PubMed Central Google Scholar
Kingwell, K. (2023). LRRK2-targeted Parkinson disease drug advances into phase III. Nature Reviews Drug Discovery, 22(1), 3–5. https://doi.org/10.1038/d41573-022-00212-0
Comments (0)