Abellán-Álvaro, M., Stork, O., Agustín-Pavón, C., & Santos, M. (2021). MeCP2 haplodeficiency and early-life stress interaction on anxiety-like behavior in adolescent female mice. Journal of Neurodevelopmental Disorders. https://doi.org/10.1186/s11689-021-09409-7
Article PubMed PubMed Central Google Scholar
Ährlund-richter, S., Harpe, J., Fernandes, G., Lam, R., & Sur, M. (2025). Persistent Disruptions in Prefrontal Connectivity Despite Behavioral Rescue by Environmental Enrichment in a Mouse Model of Rett Syndrome. 1–32.
Amir, R. E., Van Den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nature Genetics. https://doi.org/10.1038/13810
Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., & Ortiz-De-Solorzano, C. (2010). 3D reconstruction of histological sections: Application to mammary gland tissue. Microscopy Research and Technique. https://doi.org/10.1002/jemt.20829
Barnes, K. V., Coughlin, F. R., O’Leary, H. M., Bruck, N., Bazin, G. A., Beinecke, E. B., Walco, A. C., Cantwell, N. G., & Kaufmann, W. E. (2015). Anxiety-like behavior in Rett syndrome: Characteristics and assessment by anxiety scales. Journal of Neurodevelopmental Disorders. https://doi.org/10.1186/s11689-015-9127-4
Article PubMed PubMed Central Google Scholar
Barney, C. C., Feyma, T., Beisang, A., & Symons, F. J. (2015). Pain experience and expression in Rett syndrome: subjective and objective measurement approaches. Journal of Developmental and Physical Disabilities. https://doi.org/10.1007/s10882-015-9427-3
Article PubMed PubMed Central Google Scholar
Belichenko, N. P., Belichenko, P. V., Hong, H. L., Mobley, W. C., & Francke, U. (2008). Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. Journal of Comparative Neurology. https://doi.org/10.1002/cne.21673
Berton, O., Covington, H. E., Ebner, K., Tsankova, N. M., Carle, T. L., Ulery, P., Bhonsle, A., Barrot, M., Krishnan, V., Singewald, G. M., Singewald, N., Birnbaum, S., Neve, R. L., & Nestler, E. J. (2007). Induction of ΔFosB in the periaqueductal gray by stress promotes active coping responses. Neuron. https://doi.org/10.1016/j.neuron.2007.06.033
Bolton, J. L., Short, A. K., Othy, S., Kooiker, C. L., Shao, M., Gunn, B. G., Beck, J., Bai, X., Law, S. M., Savage, J. C., Lambert, J. J., Belelli, D., Tremblay, M. È., Cahalan, M. D., & Baram, T. Z. (2022). Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Reports. https://doi.org/10.1016/j.celrep.2022.110600
Catale, C., Gironda, S., Iacono, L. . Lo., & Carola, V. (2020). Microglial function in the effects of early-life stress on brain and behavioral development. Journal of Clinical Medicine. https://doi.org/10.3390/jcm9020468
Article PubMed PubMed Central Google Scholar
Cosentino, L., Witt, S. H., Dukal, H., Zidda, F., Siehl, S., Flor, H., & De Filippis, B. (2023). Methyl-CpG binding protein 2 expression is associated with symptom severity in patients with PTSD in a sex-dependent manner. Translational Psychiatry. https://doi.org/10.1038/s41398-023-02529-9
Article PubMed PubMed Central Google Scholar
Coulombe, M. A., Erpelding, N., Kucyi, A., & Davis, K. D. (2016). Intrinsic functional connectivity of periaqueductal gray subregions in humans. Human Brain Mapping. https://doi.org/10.1002/hbm.23117
Article PubMed PubMed Central Google Scholar
Cronk, J. C., Derecki, N. C., Ji, E., Xu, Y., Lampano, A. E., Smirnov, I., Baker, W., Norris, G. T., Marin, I., Coddington, N., Wolf, Y., Turner, S. D., Aderem, A., Klibanov, A. L., Harris, T. H., Jung, S., Litvak, V., & Kipnis, J. (2015). Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity. https://doi.org/10.1016/j.immuni.2015.03.013
Article PubMed PubMed Central Google Scholar
Cuitavi, J., Martínez-Rodríguez, E., Abellán-Álvaro, M., García-Arencibia, M., Santos, M., Hipólito, L., Forte, A., Agustín-Pavón, C., & Torres-Pérez, J. V. (2025). Longitudinal Analysis in Mecp2-het Female Mice Reveals Atypical Nociceptive Behaviours. https://doi.org/10.21203/rs.3.rs-5804567/v1
Dayananda, K. K., Ahmed, S., Wang, D., Polis, B., Islam, R., & Kaffman, A. (2023). Early life stress impairs synaptic pruning in the developing hippocampus. Brain, Behavior, and Immunity,. https://doi.org/10.1016/j.bbi.2022.09.014
Deng, J. V., Rodriguiz, R. M., Hutchinson, A. N., Kim, I. H., Wetsel, W. C., & West, A. E. (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neuroscience. https://doi.org/10.1038/nn.2614
Article PubMed PubMed Central Google Scholar
Derecki, N. C., Cronk, J. C., Lu, Z., Xu, E., Abbott, S. B. G., Guyenet, P. G., & Kipnis, J. (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392), 105–109. https://doi.org/10.1038/nature10907
Article CAS PubMed PubMed Central Google Scholar
Downs, J., Géranton, S. M., Bebbington, A., Jacoby, P., Bahi-Buisson, N., Ravine, D., & Leonard, H. (2010). Linking MECP2 and pain sensitivity: The example of Rett syndrome. American Journal of Medical Genetics, Part A, 152(5), 1197–1205. https://doi.org/10.1002/ajmg.a.33314
Doyle, H. H., Eidson, L. N., Sinkiewicz, D. M., & Murphy, A. Z. (2017). Sex differences in microglia activity within the periaqueductal gray of the rat: A potential mechanism driving the dimorphic effects of morphine. Journal of Neuroscience, 37(12), 3202–3214. https://doi.org/10.1523/JNEUROSCI.2906-16.2017
Article CAS PubMed Google Scholar
Glaze, D. G. (2005). Neurophysiology of Rett syndrome. Journal of Child Neurology. https://doi.org/10.1177/08830738050200090801
Guy, J., Hendrich, B., Holmes, M., Martin, J. E., & Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic rett syndrome. Nature Genetics. https://doi.org/10.1038/85899
Harry, G. J., & Kraft, A. D. (2008). Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opinion on Drug Metabolism and Toxicology. https://doi.org/10.1517/17425255.4.10.1265
Ho, Y. C., Lin, T. Bin., Hsieh, M. C., Lai, C. Y., Chou, D., Chau, Y. P., Chen, G. Den., & Peng, H. Y. (2018). Periaqueductal gray glutamatergic transmission governs chronic stress-induced depression. Neuropsychopharmacology. https://doi.org/10.1038/npp.2017.199
Imai, Y., Ibata, I., Ito, D., Ohsawa, K., & Kohsaka, S. (1996). A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochemical and Biophysical Research Communications. https://doi.org/10.1006/bbrc.1996.1112
Imbe, H., & Ihara, H. (2023). Mu opioid receptor expressing neurons in the rostral ventromedial medulla are the source of mechanical hypersensitivity induced by repeated restraint stress. Brain Research. https://doi.org/10.1016/j.brainres.2023.148465
Irfan, J., Febrianto, M. R., Sharma, A., Rose, T., Mahmudzade, Y., Di Giovanni, S., Nagy, I., & Torres-Perez, J. V. (2022). DNA Methylation and non-coding RNAs during tissue-injury associated pain. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23020752
Article PubMed PubMed Central Google Scholar
Ishiyama, M., Tamura, S., Ito, H., Takei, H., Hoshi, M., Asano, M., Itoh, M., & Shirakawa, T. (2019). Early postnatal treatment with valproate induces gad1 promoter remodeling in the brain and reduces apnea episodes in mecp2-null mice. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20205177
Article PubMed PubMed Central Google Scholar
Ito, D., Imai, Y., Ohsawa, K., Nakajima, K., Fukuuchi, Y., & Kohsaka, S. (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. Molecular Brain Research. https://doi.org/10.1016/S0169-328X(98)00040-0
Johnston, M. V., Jeon, O. H., Pevsner, J., Blue, M. E., & Naidu, S. B. (2001). Neurobiology of Rett syndrome: a genetic disorder of synapse development. Brain and Development. https://doi.org/10.1016/S0387-7604(01)00351-5
La-Vu, M. Q., Sethi, E., Maesta-Pereira, S., Schuette, P. J., Tobias, B. C., Reis, F. M. C. V., Wang, W., Torossian, A., Bishop, A., Leonard, S. J., Lin, L., Cahill, C. M., & Adhikari, A. (2022). Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. ELife. https://doi.org/10.7554/eLife.77115
Comments (0)