Alekseenko, Z., Dias, J. M., Adler, A. F., Kozhevnikova, M., van Lunteren, J. A., Nolbrant, S., Jeggari, A., Vasylovska, S., Yoshitake, T., Kehr, J., Carlén, M., Alexeyenko, A., Parmar, M., & Ericson, J. (2022). Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nature Communications, 13(1), 3046. https://doi.org/10.1038/s41467-022-30777-8
Article CAS PubMed PubMed Central Google Scholar
Al-Nusaif, M., Lin, Y., Li, T., Cheng, C., & Le, W. (2022a). Advances in NURR1-regulated neuroinflammation associated with Parkinson’s disease. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms232416184
Article PubMed PubMed Central Google Scholar
Al-Nusaif, M., Yang, Y., Li, S., Cheng, C., & Le, W. (2022b). The role of NURR1 in metabolic abnormalities of Parkinson’s disease. Molecular Neurodegeneration, 17(1), 46. https://doi.org/10.1186/s13024-022-00544-w
Article CAS PubMed PubMed Central Google Scholar
Alves dos Santos, M. T. M., & Smidt, M. P. (2011). En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Development, 6, 23. https://doi.org/10.1186/1749-8104-6-23
Article CAS PubMed PubMed Central Google Scholar
Apostolova, G., Dorn, R., Ka, S., Hallböök, F., Lundeberg, J., Liser, K., Hakim, V., Brodski, C., Michaelidis, T. M., & Dechant, G. (2007). Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons. Molecular and Cellular Neurosciences, 35(3), 397–408. https://doi.org/10.1016/j.mcn.2007.03.014
Article CAS PubMed Google Scholar
Basso, V., Döbrössy, M. D., Thompson, L. H., Kirik, D., Fuller, H. R., & Gates, M. A. (2024). State of the art in sub-phenotyping midbrain dopamine neurons. Biology. https://doi.org/10.3390/biology13090690
Article PubMed PubMed Central Google Scholar
Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science: AMS, 11(6), 1164–1178. https://doi.org/10.5114/aoms.2015.56342
Article CAS PubMed PubMed Central Google Scholar
Bertacchi, M., Maharaux, G., Loubat, A., Jung, M., & Studer, M. (2024). FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife. https://doi.org/10.7554/eLife.98096
Article PubMed PubMed Central Google Scholar
Blaess, S., Corrales, J. M. D., & Joyner, A. L. (2006). Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development (Cambridge, England), 133(9), 1799–1809. https://doi.org/10.1242/DEV.02339
Article CAS PubMed Google Scholar
Blaess, S., Szabó, N., Haddad-Tóvolli, R., Zhou, X., & Álvarez-Bolado, G. (2014). Sonic hedgehog signaling in the development of the mouse hypothalamus. Frontiers in Neuroanatomy, 8, 156. https://doi.org/10.3389/fnana.2014.00156
Bolam, J. P., & Pissadaki, E. K. (2012). Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders, 27(12), 1478–1483. https://doi.org/10.1002/mds.25135
Article CAS PubMed PubMed Central Google Scholar
Borgal, L., Hong, M., Sadi, D., & Mendez, I. (2007). Differential effects of glial cell line-derived neurotrophic factor on A9 and A10 dopamine neuron survival in vitro. Neuroscience, 147(3), 712–719. https://doi.org/10.1016/j.neuroscience.2007.03.057
Article CAS PubMed Google Scholar
Brenner, S., Wersinger, C., & Gasser, T. (2015). Transcriptional regulation of the α-synuclein gene in human brain tissue. Neuroscience Letters, 599, 140–145. https://doi.org/10.1016/j.neulet.2015.05.029
Article CAS PubMed Google Scholar
Bruning, J. M., Wang, Y., Oltrabella, F., Tian, B., Kholodar, S. A., Liu, H., Bhattacharya, P., Guo, S., Holton, J. M., Fletterick, R. J., Jacobson, M. P., & England, P. M. (2019). Covalent modification and regulation of the nuclear receptor Nurr1 by a dopamine metabolite. Cell Chemical Biology, 26(5), 674-685.e6. https://doi.org/10.1016/j.chembiol.2019.02.002
Article CAS PubMed PubMed Central Google Scholar
Burré, J. (2015). The synaptic function of α-synuclein. Journal of Parkinson’s Disease, 5(4), 699–713. https://doi.org/10.3233/JPD-150642
Article CAS PubMed PubMed Central Google Scholar
Cai, H., Liu, G., Sun, L., & Ding, J. (2014). Aldehyde dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson’s disease. Translational Neurodegeneration, 3, 27. https://doi.org/10.1186/2047-9158-3-27
Article PubMed PubMed Central Google Scholar
Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T. D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G., Gainetdinov, R. R., Gustincich, S., Dityatev, A., & Broccoli, V. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227. https://doi.org/10.1038/nature10284
Article CAS PubMed Google Scholar
Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., & Ghiglieri, V. (2023). Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death and Disease, 14(3), 176. https://doi.org/10.1038/s41419-023-05672-9
Article PubMed PubMed Central Google Scholar
Carmichael, K., Evans, R. C., Lopez, E., Sun, L., Kumar, M., Ding, J., Khaliq, Z. M., & Cai, H. (2021). Function and regulation of ALDH1A1-positive nigrostriatal dopaminergic neurons in motor control and Parkinson’s disease. Frontiers in Neural Circuits, 15, Article 644776. https://doi.org/10.3389/fncir.2021.644776
Article CAS PubMed PubMed Central Google Scholar
Chanda, S., Ang, C. E., Davila, J., Pak, C., Mall, M., Lee, Q. Y., Ahlenius, H., Jung, S. W., Südhof, T. C., & Wernig, M. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3(2), 282–296. https://doi.org/10.1016/j.stemcr.2014.05.020
Article CAS PubMed PubMed Central Google Scholar
Chen, K.-Y., Chiu, C.-H., & Wang, L.-C. (2017). Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis. Scientific Reports, 7(1), 41574. https://doi.org/10.1038/srep41574
Article CAS PubMed PubMed Central Google Scholar
Chen, S.-D., Yang, J.-L., Hwang, W.-C., & Yang, D.-I. (2018). Emerging roles of Sonic hedgehog in adult neurological diseases: Neurogenesis and beyond. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19082423
Article PubMed PubMed Central Google Scholar
Chu, Y., Le, W., Kompoliti, K., Jankovic, J., Mufson, E. J., & Kordower, J. H. (2006). Nurr1 in Parkinson’s disease and related disorders. The Journal of Comparative Neurology, 494(3), 495–514. https://doi.org/10.1002/cne.20828
Article CAS PubMed PubMed Central Google Scholar
Chung, C. Y., Licznerski, P., Alavian, K. N., Simeone, A., Lin, Z., Martin, E., Vance, J., & Isacson, O. (2010). The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain: A Journal of Neurology, 133(Pt 7), 2022–2031. https://doi.org/10.1093/BRAIN/AWQ142
Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L., & Isacson, O. (2005). Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics, 14(13), 1709–1725. https://doi.org/10.1093/hmg/ddi178
Article CAS PubMed Google Scholar
Chung, S., Leung, A., Han, B.-S., Chang, M.-Y., Moon, J.-I., Kim, C.-H., Hong, S., Pruszak, J., Isacson, O., & Kim, K.-S. (2009). Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell, 5(6), 646–658. https://doi.org/10.1016/j.stem.2009.09.015
Comments (0)