Scopoletin Attenuates Reserpine-Induced Pain-Depression Dyad in Mice via Modulation of Inflammation, Oxidative Stress, and Monoaminergic Pathways

Alqudah, A., Qnais, E., Gammoh, O., Bseiso, Y., Wedyan, M., Alqudah, M., & Hatahet, T. (2024). Scopoletin mitigates maternal separation-induced anxiety-like and depression-like behaviors in male mice through modulation of the Sirt1/NF-κB pathway. Psychopharmacology (Berl). https://doi.org/10.1007/S00213-024-06639-0/FIGURES/1

Article  PubMed  Google Scholar 

Arora, V., Kuhad, A., Tiwari, V., & Chopra, K. (2011). Curcumin ameliorates reserpine-induced pain–depression dyad: Behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology, 36(10), 1570–1581. https://doi.org/10.1016/J.PSYNEUEN.2011.04.012

Article  PubMed  CAS  Google Scholar 

Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: a literature review. Archives of Internal Medicine, 163(20), 2433–2445. https://doi.org/10.1001/ARCHINTE.163.20.2433

Article  PubMed  Google Scholar 

Bourquin, A. F., Süveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A. C., & Decosterd, I. (2006). Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain, 122(1–2), 14.e1. https://doi.org/10.1016/J.PAIN.2005.10.036

Article  PubMed  Google Scholar 

Campbell, L. C., Clauw, D. J., & Keefe, F. J. (2003). Persistent pain and depression: A biopsychosocial perspective. Biological Psychiatry, 54(3), 399–409. https://doi.org/10.1016/S0006-3223(03)00545-6

Article  PubMed  Google Scholar 

Campos, A. C. P., Antunes, G. F., Matsumoto, M., Pagano, R. L., & Martinez, R. C. R. (2020). Neuroinflammation, pain and depression: an overview of the main findings. Frontiers in Psychology, 11, Article 538553. https://doi.org/10.3389/FPSYG.2020.01825/XML/NLM

Article  Google Scholar 

Chavan, S. S., Pavlov, V. A., & Tracey, K. J. (2017). Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity, 46(6), 927–942.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chou, R. (2010). Pharmacological management of low back pain. Drugs, 70(4), 387–402. https://doi.org/10.2165/11318690-000000000-00000/METRICS

Article  PubMed  CAS  Google Scholar 

Ciarlone, A. E. (1978). Further modification of a fluorometric method for analyzing brain amines. Microchemical Journal, 23(1), 9–12. https://doi.org/10.1016/0026-265X(78)90034-6

Article  CAS  Google Scholar 

Coderre, T. J., Kumar, N., Lefebvre, C. D., & Yu, J. S. C. (2005). Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. Journal of Neurochemistry, 94(4), 1131–1139. https://doi.org/10.1111/J.1471-4159.2005.03263.X

Article  PubMed  CAS  Google Scholar 

Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46–56.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Freitas, C. M., Busanello, A., Schaffer, L. F., Peroza, L. R., Krum, B. N., Leal, C. Q., & Fachinetto, R. (2016). Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl), 233(3), 457–467. https://doi.org/10.1007/S00213-015-4118-4/FIGURES/9

Article  PubMed  Google Scholar 

de Sousa Eduardo, L., Farias, T. C., Ferreira, S. B., Ferreira, P. B., Lima, Z. N., & Ferreira, S. B. (2018). Antibacterial activity and time-kill kinetics of positive enantiomer of & #945;-pinene against strains of staphylococcus aureus and escherichia coli. Current Topics in Medicinal Chemistry, 18(11), 917–924. https://doi.org/10.2174/1568026618666180712093914

Article  PubMed  CAS  Google Scholar 

Deng, S.-J., Ge, J.-W., Xia, S.-N., Zou, X.-X., Bao, X.-Y., Gu, Y., & Meng, H.-L. (2022). Fraxetin alleviates microglia-mediated neuroinflammation after ischemic stroke. Annals of Translational Medicine, 10(8), 439. https://doi.org/10.21037/ATM-21-4636

Article  PubMed  PubMed Central  CAS  Google Scholar 

Depression and Other Common Mental Disorders. (2025). Retrieved May 8, 2025, from https://www.who.int/publications/i/item/depression-global-health-estimates

Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284. https://doi.org/10.3389/FNMOL.2017.00284/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

du Sert, N. P., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., & Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/JOURNAL.PBIO.3000411

Article  Google Scholar 

Errante, L. D., & Petroff, O. A. C. (2003). Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure, 12(5), 300–306. https://doi.org/10.1016/S1059-1311(02)00295-9

Article  PubMed  Google Scholar 

Felger, J. C., & Lotrich, F. E. (2013). Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience, 246, 199–229. https://doi.org/10.1016/J.NEUROSCIENCE.2013.04.060

Article  PubMed  CAS  Google Scholar 

Fishbain, D. A., Cutler, R., Rosomoff, H. L., & Rosomoff, R. S. (2000). Evidence-Based Data From Animal and Human Experimental Studies on Pain Relief With Antidepressants: A Structured Review. Pain Medicine, 1(4), 310–316. https://doi.org/10.1046/J.1526-4637.2000.00042.X

Article  PubMed  CAS  Google Scholar 

Gay, N. H., Suwanjang, W., Ruankham, W., Songtawee, N., Wongchitrat, P., Prachayasittikul, V., & Phopin, K. (2020). Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Advances, 10(28), 16593–16606. https://doi.org/10.1039/C9RA06056A

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gorbunova, M. V., Gutorova, S. V., Berseneva, D. A., Apyari, V. V., Zaitsev, V. D., Dmitrienko, S. G., & Zolotov, Y. A. (2019). Spectroscopic methods for determination of catecholamines: A mini-review. Applied Spectroscopy Reviews, 54(8), 631–652. https://doi.org/10.1080/05704928.2018.1470980

Article  CAS  Google Scholar 

Gursahani, M., Gawali, N., Pai, S., Mestry, S., & Juvekar, A. (2021). Scopoletin ameliorates lipopolysaccharide induced neuroinflammation, oxidative stress and cognitive dysfunction in mice: a mechanistic study. Journal of Pharmaceutical Research International, 33(3), 74–90. https://doi.org/10.9734/jpri/2021/v33i331164

Article  CAS  Google Scholar 

Haase, J., & Brown, E. (2015). Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — A central role for the serotonin transporter? Pharmacology & Therapeutics, 147, 1–11. https://doi.org/10.1016/J.PHARMTHERA.2014.10.002

Article  CAS  Google Scholar 

Haroon, E., Raison, C. L., & Miller, A. H. (2011). Psychoneuroimmunology Meets Neuropsychopharmacology: Translational Implications of the Impact of Inflammation on Behavior. Neuropsychopharmacology, 37(1), 137–162. https://doi.org/10.1038/npp.2011.205

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jackson, K. C., & Onge, E. L. (2003). Antidepressant pharmacotherapy: considerations for the pain clinician. Pain Practice, 3(2), 135–143. https://doi.org/10.1046/J.1533-2500.2003.03020.X

Article  PubMed  Google Scholar 

Kamiñska, K., Goembiowska, K., & Rogóz, Z. (2013). Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacological Reports, 65(5), 1144–1151. https://doi.org/10.1016/S1734-1140(13)71472-5

Article  PubMed  Google Scholar 

Kashyap, P., Ram, H., Shukla, S. D., & Kumar, S. (2020). Scopoletin: Antiamyloidogenic, Anticholinesterase, and Neuroprotective Potential of a Natural Compound Present in Argyreia speciosa Roots by In Vitro and In Silico Study. Neuroscience Insights, https://doi.org/10.1177/2633105520937693/SUPPL_FILE/SJ-PDF-1-EXN-10.1177_2633105520937693.PDF

Kia, S., & Choy, E. (2017). Update on treatment guideline in fibromyalgia syndrome with focus on pharmacology. Biomedicines, 5(2), 20. https://doi.org/10.3390/BIOMEDICINES5020020

Article  PubMed  PubMed Central  Google Scholar 

Kim, H. J., Jang, S. I., Kim, Y. J., Chung, H. T., Yun, Y. G., Kang, T. H., & Kim, Y. C. (2004). Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia, 75(3–4), 261–266. https://doi.org/10.1016/J.FITOTE.2003.12.021

Article  PubMed  CAS 

Comments (0)

No login
gif