Alqudah, A., Qnais, E., Gammoh, O., Bseiso, Y., Wedyan, M., Alqudah, M., & Hatahet, T. (2024). Scopoletin mitigates maternal separation-induced anxiety-like and depression-like behaviors in male mice through modulation of the Sirt1/NF-κB pathway. Psychopharmacology (Berl). https://doi.org/10.1007/S00213-024-06639-0/FIGURES/1
Arora, V., Kuhad, A., Tiwari, V., & Chopra, K. (2011). Curcumin ameliorates reserpine-induced pain–depression dyad: Behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology, 36(10), 1570–1581. https://doi.org/10.1016/J.PSYNEUEN.2011.04.012
Article PubMed CAS Google Scholar
Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: a literature review. Archives of Internal Medicine, 163(20), 2433–2445. https://doi.org/10.1001/ARCHINTE.163.20.2433
Bourquin, A. F., Süveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A. C., & Decosterd, I. (2006). Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain, 122(1–2), 14.e1. https://doi.org/10.1016/J.PAIN.2005.10.036
Campbell, L. C., Clauw, D. J., & Keefe, F. J. (2003). Persistent pain and depression: A biopsychosocial perspective. Biological Psychiatry, 54(3), 399–409. https://doi.org/10.1016/S0006-3223(03)00545-6
Campos, A. C. P., Antunes, G. F., Matsumoto, M., Pagano, R. L., & Martinez, R. C. R. (2020). Neuroinflammation, pain and depression: an overview of the main findings. Frontiers in Psychology, 11, Article 538553. https://doi.org/10.3389/FPSYG.2020.01825/XML/NLM
Chavan, S. S., Pavlov, V. A., & Tracey, K. J. (2017). Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity, 46(6), 927–942.
Article PubMed PubMed Central CAS Google Scholar
Chou, R. (2010). Pharmacological management of low back pain. Drugs, 70(4), 387–402. https://doi.org/10.2165/11318690-000000000-00000/METRICS
Article PubMed CAS Google Scholar
Ciarlone, A. E. (1978). Further modification of a fluorometric method for analyzing brain amines. Microchemical Journal, 23(1), 9–12. https://doi.org/10.1016/0026-265X(78)90034-6
Coderre, T. J., Kumar, N., Lefebvre, C. D., & Yu, J. S. C. (2005). Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. Journal of Neurochemistry, 94(4), 1131–1139. https://doi.org/10.1111/J.1471-4159.2005.03263.X
Article PubMed CAS Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46–56.
Article PubMed PubMed Central CAS Google Scholar
De Freitas, C. M., Busanello, A., Schaffer, L. F., Peroza, L. R., Krum, B. N., Leal, C. Q., & Fachinetto, R. (2016). Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl), 233(3), 457–467. https://doi.org/10.1007/S00213-015-4118-4/FIGURES/9
de Sousa Eduardo, L., Farias, T. C., Ferreira, S. B., Ferreira, P. B., Lima, Z. N., & Ferreira, S. B. (2018). Antibacterial activity and time-kill kinetics of positive enantiomer of & #945;-pinene against strains of staphylococcus aureus and escherichia coli. Current Topics in Medicinal Chemistry, 18(11), 917–924. https://doi.org/10.2174/1568026618666180712093914
Article PubMed CAS Google Scholar
Deng, S.-J., Ge, J.-W., Xia, S.-N., Zou, X.-X., Bao, X.-Y., Gu, Y., & Meng, H.-L. (2022). Fraxetin alleviates microglia-mediated neuroinflammation after ischemic stroke. Annals of Translational Medicine, 10(8), 439. https://doi.org/10.21037/ATM-21-4636
Article PubMed PubMed Central CAS Google Scholar
Depression and Other Common Mental Disorders. (2025). Retrieved May 8, 2025, from https://www.who.int/publications/i/item/depression-global-health-estimates
Deuis, J. R., Dvorakova, L. S., & Vetter, I. (2017). Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience, 10, 284. https://doi.org/10.3389/FNMOL.2017.00284/BIBTEX
Article PubMed PubMed Central Google Scholar
du Sert, N. P., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., & Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/JOURNAL.PBIO.3000411
Errante, L. D., & Petroff, O. A. C. (2003). Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure, 12(5), 300–306. https://doi.org/10.1016/S1059-1311(02)00295-9
Felger, J. C., & Lotrich, F. E. (2013). Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience, 246, 199–229. https://doi.org/10.1016/J.NEUROSCIENCE.2013.04.060
Article PubMed CAS Google Scholar
Fishbain, D. A., Cutler, R., Rosomoff, H. L., & Rosomoff, R. S. (2000). Evidence-Based Data From Animal and Human Experimental Studies on Pain Relief With Antidepressants: A Structured Review. Pain Medicine, 1(4), 310–316. https://doi.org/10.1046/J.1526-4637.2000.00042.X
Article PubMed CAS Google Scholar
Gay, N. H., Suwanjang, W., Ruankham, W., Songtawee, N., Wongchitrat, P., Prachayasittikul, V., & Phopin, K. (2020). Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Advances, 10(28), 16593–16606. https://doi.org/10.1039/C9RA06056A
Article PubMed PubMed Central CAS Google Scholar
Gorbunova, M. V., Gutorova, S. V., Berseneva, D. A., Apyari, V. V., Zaitsev, V. D., Dmitrienko, S. G., & Zolotov, Y. A. (2019). Spectroscopic methods for determination of catecholamines: A mini-review. Applied Spectroscopy Reviews, 54(8), 631–652. https://doi.org/10.1080/05704928.2018.1470980
Gursahani, M., Gawali, N., Pai, S., Mestry, S., & Juvekar, A. (2021). Scopoletin ameliorates lipopolysaccharide induced neuroinflammation, oxidative stress and cognitive dysfunction in mice: a mechanistic study. Journal of Pharmaceutical Research International, 33(3), 74–90. https://doi.org/10.9734/jpri/2021/v33i331164
Haase, J., & Brown, E. (2015). Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — A central role for the serotonin transporter? Pharmacology & Therapeutics, 147, 1–11. https://doi.org/10.1016/J.PHARMTHERA.2014.10.002
Haroon, E., Raison, C. L., & Miller, A. H. (2011). Psychoneuroimmunology Meets Neuropsychopharmacology: Translational Implications of the Impact of Inflammation on Behavior. Neuropsychopharmacology, 37(1), 137–162. https://doi.org/10.1038/npp.2011.205
Article PubMed PubMed Central CAS Google Scholar
Jackson, K. C., & Onge, E. L. (2003). Antidepressant pharmacotherapy: considerations for the pain clinician. Pain Practice, 3(2), 135–143. https://doi.org/10.1046/J.1533-2500.2003.03020.X
Kamiñska, K., Goembiowska, K., & Rogóz, Z. (2013). Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacological Reports, 65(5), 1144–1151. https://doi.org/10.1016/S1734-1140(13)71472-5
Kashyap, P., Ram, H., Shukla, S. D., & Kumar, S. (2020). Scopoletin: Antiamyloidogenic, Anticholinesterase, and Neuroprotective Potential of a Natural Compound Present in Argyreia speciosa Roots by In Vitro and In Silico Study. Neuroscience Insights, https://doi.org/10.1177/2633105520937693/SUPPL_FILE/SJ-PDF-1-EXN-10.1177_2633105520937693.PDF
Kia, S., & Choy, E. (2017). Update on treatment guideline in fibromyalgia syndrome with focus on pharmacology. Biomedicines, 5(2), 20. https://doi.org/10.3390/BIOMEDICINES5020020
Article PubMed PubMed Central Google Scholar
Kim, H. J., Jang, S. I., Kim, Y. J., Chung, H. T., Yun, Y. G., Kang, T. H., & Kim, Y. C. (2004). Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia, 75(3–4), 261–266. https://doi.org/10.1016/J.FITOTE.2003.12.021
Comments (0)