Adesso, S., Ruocco, M., Rapa, S. F., Piaz, F. D., Raffaele Di Iorio, B., Popolo, A., et al. (2019). Effect of indoxyl sulfate on the repair and intactness of intestinal epithelial cells: Role of reactive oxygen species’ release. International Journal of Molecular Sciences, 20, 9.
Al-Chalabi, A., Jones, A., Troakes, C., King, A., Al-Sarraj, S., & van den Berg, L. H. (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 124, 339–352.
Article CAS PubMed Google Scholar
Ansari, U., Alam, M., Nadora, D., Muttalib, Z., Chen, V., Taguinod, I., FitzPatrick, M., Wen, J., Ansari, Z., & Lui, F. (2024). Assessing the efficacy of amyotrophic lateral sclerosis drugs in slowing disease progression: A literature review. AIMS Neuroscience, 11, 166–177. https://doi.org/10.3934/Neuroscience.2024.2.166
Article PubMed PubMed Central Google Scholar
Arotcarena, M. L., Dovero, S., Prigent, A., et al. (2020). Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 143, 1462–1475.
Ayala, V., Fontdevila, L., Rico-Rios, S., Povedano, M., Andrés-Benito, P., Torres, P., Serrano, J. C. E., Pamplona, R., & Portero-Otin, M. (2025). Microbial influences on amyotrophic lateral sclerosis: The gut–brain axis and therapeutic potential of microbiota modulation. Sclerosis, 3, 8.
Baird, L., & Yamamoto, M. (2020). The molecular mechanisms regulating the KEAP1-NRF2 pathway. Molecular and Cellular Biology, 40, e00099.
Article CAS PubMed PubMed Central Google Scholar
Bedlack, R., Li, X., Evangelista, B. A., Panzetta, M. E., Kwan, J., Gittings, L. M., & Sattler, R. (2024). The scientific and therapeutic rationale for off-label treatments in amyotrophic lateral sclerosis. Annals of Neurology, 97, 15–27.
Article PubMed PubMed Central Google Scholar
Beers, R., Zhao, W., Wang, J., et al. (2017). ALS patients’ regulatory T lymphocytes are dysfunctional and correlate with disease progression rate and severity. JCI Insight, 2, 5.
Béland, L. C., Markovinovic, A., Jakovac, H., De Marchi, F., Bilic, E., Mazzini, L., Kriz, J., & Munitic, I. (2020). Immunity in amyotrophic lateral sclerosis: Blurred lines between excessive inflammation and inefficient immune responses. Brain Communications, 2, fcaa124.
Article PubMed PubMed Central Google Scholar
Benoit, E., & Escande, D. (1991). Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Archiv, 419, 603–609.
Article CAS PubMed Google Scholar
Bilsland, L. G., Sahai, E., Kelly, G., Golding, M., Greensmith, L., & Schiavo, G. (2010). Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences USA, 107, 20523–20528.
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., et al. (2019a). Potential roles of gut microbiome and metabolites in modulating ALS pathogenesis. Nature Communications, 10, 1–10. https://doi.org/10.1038/s41467-019-08453-9
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., et al. (2019b). Potential roles of gut microbiome and metabolites in modulating ALS progression. Nature Communications, 10, 5825.
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., Zvibel, I., Elinav, E., Segal, E., Halpern, Z., Amariglio, N., Ben-Haim, S., & Koren, O. (2017). The gut microbiome in neurodegenerative disorders. Nature Reviews Neurology, 13, 359–371. https://doi.org/10.1038/nrneurol.2017.44
Blasco, H., et al. (2018). Gut microbiota and amyotrophic lateral sclerosis: A potential mechanism. Frontiers in Cellular Neuroscience, 12, 460.
Blokhuis, A. M., Groen, E. J., Koppers, M., van den Berg, L. H., & Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 125, 777–794.
Article CAS PubMed PubMed Central Google Scholar
Boddy, S. L., Giovannelli, I., Sassani, M., Cooper-Knock, J., Snyder, M. P., Segal, E., Elinav, E., Barker, L. A., Shaw, P. J., & McDermott, C. J. (2021). The gut microbiome: A key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Medicine, 19, 1–14.
Borbolis, F., Mytilinaiou, E., & Palikaras, K. (2023). The crosstalk between microbiome and mitochondrial homeostasis in neurodegeneration. Cells, 12(3), 429.
Article CAS PubMed PubMed Central Google Scholar
Boros, B. D., Schoch, K. M., Kreple, C. J., & Miller, T. M. (2022). Antisense oligonucleotides for the study and treatment of ALS. Neurotherapeutics, 19, 1145–1158.
Article CAS PubMed PubMed Central Google Scholar
Brenner, D., et al. (2018). Hot-spot KIF5A mutations cause familial ALS. Brain, 141, 688–697.
Article PubMed PubMed Central Google Scholar
Brenner, D., et al. (2023a). Gut microbiota and amyotrophic lateral sclerosis: A role for neuroinflammation. Cells, 12, 256. https://doi.org/10.3390/cells12010256
Brenner, D., et al. (2023b). Gut microbiota and amyotrophic lateral sclerosis: A role for neuroinflammation. Cells, 12(1), 256.
Burberry, A., Wells, M. F., Limone, F., Couto, A., Smith, K. S., Keaney, J., et al. (2020). C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 582, 89–94.
Article CAS PubMed PubMed Central Google Scholar
Burk, K., & Pasterkamp, R. J. (2019). Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathologica, 137, 859–877.
Article CAS PubMed PubMed Central Google Scholar
Butti, Z., & Patten, S. A. (2019a). RNA dysregulation in amyotrophic lateral sclerosis. Frontiers in Genetics, 9, 712. https://doi.org/10.3389/fgene.2018.00712
Article CAS PubMed PubMed Central Google Scholar
Butti, Z., & Patten, S. A. (2019b). RNA dysregulation in amyotrophic lateral sclerosis. Frontiers in Genetics, 9, 712.
Article PubMed PubMed Central Google Scholar
Carriedo, S. G., Sensi, S. L., Yin, H. Z., & Weiss, J. H. (2000). AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. Journal of Neuroscience, 20, 240–250.
Article CAS PubMed Google Scholar
Casani-Cubel, J., Benlloch, M., Sanchis-Sanchis, C. E., Marin, R., Lajara-Romance, J. M., & de la Rubia Orti, J. E. (2021). The impact of microbiota on the pathogenesis of amyotrophic lateral sclerosis and the possible benefits of polyphenols. An overview. Metabolites, 11(2), 120.
Article CAS PubMed PubMed Central Google Scholar
Cecerska-Heryć, E., Pękała, M., Serwin, N., et al. (2023). The use of stem cells as a potential treatment method for selected neurodegenerative diseases: Review. Cellular and Molecular Neurobiology, 43, 2643–2673. https://doi.org/10.1007/s10571-023-01234-5
Article PubMed PubMed Central Google Scholar
Chen, S., Cai, X., Lao, L., Wang, Y., Su, H., & Sun, H. (2024). Brain-gut-microbiota axis in amyotrophic lateral sclerosis: A historical overview and future directions. Aging & Disease, 15, 74–95. https://doi.org/10.14336/AD.2023.1231
Ciranna, L. (2006). Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: Implications in physiological functions and in pathology. Current Neuropharmacology, 4, 101–114.
Article CAS PubMed PubMed Central Google Scholar
Clarke, B. E., & Patani, R. (2020). The microglial component of amyotrophic lateral sclerosis. Brain, 143, 3526–3539.
Article PubMed PubMed Central Google Scholar
Coque, E., Salsac, C., Espinosa-Carrasco, G., Varga, B., Degauque, N., Cadoux, M., et al. (2019). Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proceedings of the National Academy of Sciences USA, 116, 2312–2317. https://doi.org/10.1073/pnas.1815961116
Comments (0)