Item does not exist

Ca-Affinitive and Non-Ca-Affinitive Synaptotagmins in Human Pan-cancer

Bharat, V., Siebrecht, M., Burk, K., Ahmed, S., Reissner, C., Kohansal-Nodehi, M., Steubler, V., Zweckstetter, M., Ting, J. T., & Dean, C. (2017). Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4 [Article]. Cell Reports, 21(8), 2118–2133. https://doi.org/10.1016/j.celrep.2017.10.084

Article  CAS  PubMed  Google Scholar 

Bonnal, S. C., López-Oreja, I., & Valcárcel, J. (2020). Roles and mechanisms of alternative splicing in cancer — implications for care. Nature Reviews Clinical Oncology, 17(8), 457–474. https://doi.org/10.1038/s41571-020-0350-x

Article  PubMed  Google Scholar 

Chen, D., Xu, L., Xing, H., Shen, W., Song, Z., Li, H., Zhu, X., Li, X., Wu, L., Jiao, H., Li, S., Yan, J., He, Y., & Yan, D. (2024a). Sangerbox 2: Enhanced functionalities and update for a comprehensive clinical bioinformatics data analysis platform. Imeta, 3(5), Article e238. https://doi.org/10.1002/imt2.238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y., Gu, Y., Wang, B., Wei, A., Dong, N., Jiang, Y., Liu, X., Zhu, L., Zhu, F., Tan, T., Jing, Z., Mao, F., Zhang, Y., Yao, J., Yang, Y., Wang, H., Wu, H., Li, H., Zheng, C., … Wang, C. (2024b). Synaptotagmin-11 deficiency mediates schizophrenia-like behaviors in mice via dopamine over-transmission. Nature Communications, 15(1), 10571. https://doi.org/10.1038/s41467-024-54604-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colvin, R. A., Means, T. K., Diefenbach, T. J., Moita, L. F., Friday, R. P., Sever, S., Campanella, G. S., Abrazinski, T., Manice, L. A., Moita, C., Andrews, N. W., Wu, D., Hacohen, N., & Luster, A. D. (2010). Synaptotagmin-mediated vesicle fusion regulates cell migration. Nature Immunology, 11(6), 495–502. https://doi.org/10.1038/ni.1878

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, C., Wang, Y., Zhang, F., Yan, S., Guan, Y., Gong, X., Zhang, T., Cui, X., Wang, X., & Zhang, C. X. (2017). Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia, 65(10), 1656–1667. https://doi.org/10.1002/glia.23186

Article  PubMed  Google Scholar 

Essegian, D., Khurana, R., Stathias, V., & Schürer, S. C. (2020). The clinical kinase index: A method to prioritize understudied kinases as drug targets for the treatment of cancer. Cell Rep Med, 1(7), Article 100128. https://doi.org/10.1016/j.xcrm.2020.100128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, C., Tang, Z., Zhang, W., Ye, Z., & Liu, F. (2021). GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Research, 49(W1), W242. https://doi.org/10.1093/nar/gkab418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Ge, D., & Lu, C. (2019). The SMART App: An interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics & Chromatin, 12(1), 71. https://doi.org/10.1186/s13072-019-0316-3

Article  CAS  Google Scholar 

Lindmark, I. M., Karlsson, A., Serrander, L., Francois, P., Lew, D., Rasmusson, B., Stendahl, O., & Nüsse, O. (2002). Synaptotagmin II could confer Ca(2+) sensitivity to phagocytosis in human neutrophils. Biochimica Et Biophysica Acta, 1590(1–3), 159–166. https://doi.org/10.1016/s0167-4889(02)00209-4

Article  CAS  PubMed  Google Scholar 

Liu, H., Dang, R., Zhang, W., Hong, J., & Li, X. (2024). SNARE proteins: Core engines of membrane fusion in cancer. Biochimica et Biophysica Acta (BBA) Reviews on Cancer. https://doi.org/10.1016/j.bbcan.2024.189148

Article  PubMed  Google Scholar 

Milochau, A., Lagrée, V., Benassy, M.-N., Chaignepain, S., Papin, J., Garcia-Arcos, I., Lajoix, A., Monterrat, C., Coudert, L., Schmitter, J.-M., Ochoa, B., & Lang, J. (2014). Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells. FEBS Letters, 588(14), 2217–2222. https://doi.org/10.1016/j.febslet.2014.05.031

Article  CAS  PubMed  Google Scholar 

Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y., & Mikoshiba, K. (2000). SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. Journal of Biological Chemistry, 275(13), 9823–9831. https://doi.org/10.1074/jbc.275.13.9823

Article  CAS  PubMed  Google Scholar 

Mori, Y., Higuchi, M., Hirabayashi, Y., Fukuda, M., & Gotoh, Y. (2008). JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO Journal, 27(1), 76–87. https://doi.org/10.1038/sj.emboj.7601935

Article  CAS  PubMed  Google Scholar 

Streit, L., Tanguy, É., Brunaud, L., Tóth, P., Vitale, N., Ory, S., & Gasman, S. (2023). Hormone secretion in pheochromocytoma: A dangerous story of poorly controlled vesicular exocytosis. Medical Science, 39(12), 928–930. https://doi.org/10.1051/medsci/2023173

Article  Google Scholar 

Suo, H., Xiao, N., & Wang, K. (2022). Potential roles of synaptotagmin family members in cancers: Recent advances and prospects. Frontiers in Medicine. https://doi.org/10.3389/fmed.2022.968081

Article  PubMed  PubMed Central  Google Scholar 

Takamori, M., Hamada, T., Komai, K., Takahashi, M., & Yoshida, A. (1994). Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats. Annals of Neurology, 35(1), 74–80. https://doi.org/10.1002/ana.410350112

Article  CAS  PubMed  Google Scholar 

Wang, C., Kang, X., Zhou, L., Chai, Z., Wu, Q., Huang, R., Xu, H., Hu, M., Sun, X., Sun, S., Li, J., Jiao, R., Zuo, P., Zheng, L., Yue, Z., & Zhou, Z. (2018). Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson’s disease-like pathology. Nature Communications, 9(1), 81. https://doi.org/10.1038/s41467-017-02593-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, D., Qian, X., Du, Y. C., Sanchez-Solana, B., Chen, K., Kanigicherla, M., Jenkins, L. M., Luo, J., Eng, S., Park, B., & Chen, B. (2023). ProSite: A web based interactive platform for online proteomics phosphoproteomics and genomics data analysis. Journal of Biotechnology and Biomedicine., 6(4), 573. https://doi.org/10.26502/jbb.2642-91280119

Article  PubMed  PubMed Central  Google Scholar 

Wang, J., Song, X., Wei, M., Qin, L., Zhu, Q., Wang, S., Liang, T., Hu, W., Zhu, X., & Li, J. (2024). PCAS: An integrated tool for multi-dimensional cancer research utilizing clinical proteomic tumor analysis consortium data. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms25126690

Article  PubMed  PubMed Central  Google Scholar 

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., & Maitland, A. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research. https://doi.org/10.1093/nar/gkq537

Article  PubMed  PubMed Central  Google Scholar 

Wolfes, A. C., & Dean, C. (2020). The diversity of synaptotagmin isoforms. Current Opinion in Neurobiology, 63, 198–209. https://doi.org/10.1016/j.conb.2020.04.006

Article  CAS  PubMed  Google Scholar 

Wu, M. H., & Low, T. L. (1996). Distribution of thymic hormones in thymic tumors and myasthenic thymus. Proceedings of the National Science Council, Republic of China. Part b, Life Sciences, 20(1), 1–5.

PubMed  Google Scholar 

Yamada, K., & Yoshida, K. (2023). Cancer-related unconventional protein secretion: A new role of the endoplasmic reticulum. DNA and Cell Biology, 42(5), 225–228. https://doi.org/10.1089/dna.2023.0044

Article  CAS  PubMed  Google Scholar 

Zhang, F., Yang, D., Li, J., Du, C., Sun, X., Li, W., Liu, F., Yang, Y., Li, Y., Fu, L., Li, R., & Zhang, C. X. (2023). Synaptotagmin-11 regulates immune functions of microglia in vivo. Journal of Neurochemistry, 167(5), 680–695. https://doi.org/10.1111/jnc.16003

Article  CAS  PubMed  Google Scholar 

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://doi.org/10.1038/s41467-019-09234-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif