Anilkumar, U., Khacho, M., Cuillerier, A., Harris, R., Patten, D., Bilen, M., Patten, D. A., Iqbal, M. A., Guo, D. Y., Trudeau, L.-E., Park, D. S., Harper, M.-E., Burelle, Y., Slack, R. S., & Slack, R. (2020). Mcl-1matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death and Disease. https://doi.org/10.1038/s41419-020-2498-9
Aryal, B., & Rao, V. A. (2016). Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes. PLoS ONE, 11(7), Article e0158376. https://doi.org/10.1371/journal.pone.0158376
Bock, F. J., & Tait, S. W. G. (2020). Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 21, 85–100.
Cheng, H., Yang, B., Ke, T., Li, S., Yang, X., Aschner, M., & Chen, P. (2021). Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics, 9(6), Article 142. https://doi.org/10.3390/toxics9060142
Cunha, M. P., Martín-de-Saavedra, M. D., Romero, A., Egea, J., Ludka, F. K., Tasca, C. I., Farina, M., Rodrigues, A. L., & López, M. G. (2014). Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro, 6(6), Article 1759091414554945. https://doi.org/10.1177/1759091414554945
Du, J., Zhang, A., Li, J., Liu, X., Wu, S., Wang, B., Wang, Y., & Jia, H. (2021). Doxorubicin-induced cognitive impairment: The mechanistic insights. Frontiers in Oncology, 11, Article 673340.
Dworzański, J., Strycharz-Dudziak, M., Kliszczewska, E., Kiełczykowska, M., Dworzańska, A., Drop, B., & Polz-Dacewicz, M. (2020). Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS ONE, 15, Article e0230374.
Grilc, N. K., Sova, M., & Kristl, J. (2021). Drug delivery strategies for curcumin and other natural Nrf2 modulators of oxidative stress-related diseases. Pharmaceutics, 13(12), 2137. https://doi.org/10.3390/pharmaceutics13122137I
Guo, R., Xu, W., Jian-cong, L., Mo, L., Hua, X., Chen, P., & Feng, J. (2013). Activation of the p38 MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells. Molecular Medicine Reports, 8(2), 603–608. https://doi.org/10.3892/mmr.2013.1554
Himmel, L., Lustberg, M., DeVries, A., Poi, M., Chen, C., & Kulp, S. (2016). Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer. Experimental and Toxicologic Pathology, 68(9), 505–515. https://doi.org/10.1016/j.etp.2016.08.001
Kamińska, K., & Cudnoch-Jędrzejewska, A. (2023). A review on the neurotoxic effects of doxorubicin. Neurotoxicology Research, 41(5), 383–397. https://doi.org/10.1007/s12640-023-00652-5
Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska-Kołat, Ż, Celik, I., & Kontek, R. (2023). Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. https://doi.org/10.3390/cells12040659
Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., Yan, L., & Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18, 760–770.
Kumar, M., & Singh, S. (2023). Advancing neuroprotection in traumatic brain injury: Maximizing the potential of the nuclear factor erythroid 2-related factor 2/nuclear factor kappa b pathway through insights from animal models. Pharmaspire, 15(02), 74–79. https://doi.org/10.56933/pharmaspire.2023.15113
Leung, W. S., Kuo, W. W., Ju, D. T., Wang, T. D., Chen, W.-T., Ho, T. J., Lin, Y. M., Mahalakshmi, B., Lin, J. Y., & Huang, C. Y. (2020). Protective effects of diallyl trisulfide (DATS) against doxorubicin-induced inflammation and oxidative stress in the brain of rats. Free Radical Biology and Medicine, 160, 141–148.
Liu, W., Qaed, E., Zhu, H. G., Dong, M. X., & Tang, Z. (2021). Non-energy mechanism of phosphocreatine on the protection of cell survival. Biomedicine & Pharmacotherapy, 141, Article 111839.
Moujalled, D., Strasser, A., & Liddell, J. R. (2021). Molecular mechanisms of cell death in neurological diseases. Cell Death and Differentiation, 28, 2029–2044.
Ongnok, B., Chattipakorn, N., & Chattipakorn, S. C. (2020). Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Experimental Neurology, 324, Article 113118.
Ongnok, B., Khuanjing, T., Chunchai, T., Pantiya, P., Kerdphoo, S., Arunsak, B., Nawara, W., Jaiwongkam, T., Apaijai, N., Chattipakorn, N., & Chattipakorn, S. C. (2021). Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurotherapeutics, 18, 2107–2125.
Orchard, T., Gaudier-Diaz, M., Weinhold, K., & DeVries, A. (2016). Clearing the fog: A review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits. Breast Cancer Research and Treatment, 161(3), 391–398. https://doi.org/10.1007/s10549-016-4073-8I
Perluigi, M., Di Domenico, F., & Butterfield, D. A. (2024). Oxidative damage in neurodegeneration: Roles in the pathogenesis and progression of Alzheimer disease. Physiological Reviews, 104, 103–197.
Qaed, E., Wang, J., Almoiliqy, M., Song, Y., Liu, W., Chu, P., Alademi, S., Alademi, M., Li, H., Alshwmi, M., Al-Azab, M., Ahsan, A., Mahdi, S., Han, G., Niu, M., Ali, A., Shopit, A., Wang, H., Li, X., … Tang, Z. (2019). Phosphocreatine improves cardiac dysfunction by normalizing mitochondrial respiratory function through JAK2/STAT3 signaling pathway in vivo and in vitro. Oxidative Medicine and Cellular Longevity, 2019, 6521218.
Qaed, E., Almaamari, A., Almoiliqy, M., Alyafeai, E., Sultan, M., Aldahmash, W., Mahyoub, M. A., & Tang, Z. (2024). Phosphocreatine attenuates doxorubicin-induced nephrotoxicity through inhibition of apoptosis, and restore mitochondrial function via activation of Nrf2 and PGC-1α pathways. Chemico-Biological Interactions, 400, Article 111147.
Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A., & Xu, B. (2017). Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cellular and Molecular Life Sciences, 74(21), 3863–3881. https://doi.org/10.1007/s00018-017-2609-7
Schroer, J., Warm, D., Rosa, F., Luhmann, H., & Sinning, A. (2023). Activity-dependent regulation of the BAX/BCL-2 pathway protects cortical neurons from apoptotic death during early development. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-023-04824-6
Shaker, F. H., El-Derany, M. O., Wahdan, S. A., El-Demerdash, E., & El-Mesallamy, H. O. (2021). Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats. Life Sciences, 269, Article 119078.
Singh, S., & Singh, T. G. (2020). Role of Nuclear Factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Current Neuropharmacology, 18, 918–935.
Toader, C., Serban, M., Munteanu, O., Covache-Busuioc, R., Enyedi, M., Ciurea, A., & Tătaru, C. (2025). From synaptic plasticity to neurodegeneration: BDNF as a transformative target in medicine. International Journal of Molecular Sciences, 26(9), 4271. https://doi.org/10.3390/ijms26094271I
Usmani, M., Krattli, R., El-Khatib, S., Le, A., Smith, S., Baulch, J., & Chan, A. (2023). BDNF augmentation using riluzole reverses doxorubicin-induced decline in cognitive function and neurogenesis. Neurotherapeutics, 20(3), 838–852. https://doi.org/10.1007/s13311-022-01339-zI
Wang, Z., Dong, H., Wang, J., Huang, Y., Zhang, X., Tang, Y., Li, Q., Liu, Z., Ma, Y., Tong, J., Huang, L., Fei, J., Yu, M., Wang, J., & Huang, F. (2020). Pro-survival and anti-inflammatory roles of NF-κB c-Rel in the Parkinson’s disease models. Redox Biology, 30, Article 101427.
Wu, B. B., Leung, K. T., & Poon, E. N. (2022). Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23031912
Yang, D., Wang, X., Zhang, L., Fang, Y., Zheng, Q., Liu, X., Yu, W., Chen, S., Ying, J., & Hua, F. (2022). Lipid metabolism and storage in neuroglia: Role in brain development and neurodegenerative diseases. Cell Bioscience, 12, 106.
Comments (0)