Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40. https://doi.org/10.1128/mcb.00099-20
Bartolini D, Dallaglio K, Torquato P, Piroddi M, Galli F (2018) Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma. Transl Res 193:54–71. https://doi.org/10.1016/j.trsl.2017.11.007
Basso M, Massignan T, Samengo G et al (2006) Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J Biol Chem 281:33325–33335. https://doi.org/10.1074/jbc.M603489200
Berezowska S, Galván JA (2023) Immunohistochemical detection of the autophagy markers LC3 and p62/SQSTM1 in formalin-fixed and paraffin-embedded tissue. Methods Mol Biol 2566:133–139. https://doi.org/10.1007/978-1-0716-2675-7_10
Calabrese EJ, Pressman P, Hayes AW et al (2025) Fisetin: hormesis accounts for many of its chemoprotective effects. Biogerontology 26:90. https://doi.org/10.1007/s10522-025-10230-1
Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221. https://doi.org/10.1002/aja.1001940306
Chua JP, De Calbiac H, Kabashi E, Barmada SJ (2022) Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 18:254–282. https://doi.org/10.1080/15548627.2021.1926656
Deng Z, Sheehan P, Chen S, Yue Z (2017) Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease? Mol Neurodegener 12:90. https://doi.org/10.1186/s13024-017-0232-6
Article PubMed PubMed Central Google Scholar
Deng Z, Lim J, Wang Q et al (2020) ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16:917–931. https://doi.org/10.1080/15548627.2019.1644076
Evans CS, Holzbaur ELF (2019) Autophagy and mitophagy in ALS. Neurobiol Dis 122:35–40.https://doi.org/10.1080/15548627.2019.1644076
Geronimo A, Albertson RM, Noto J, Simmons Z (2022) Ten years of riluzole use in a tertiary ALS clinic. Muscle Nerve 65:659–666. https://doi.org/10.1002/mus.27541
Article PubMed PubMed Central Google Scholar
Han H, Wei W, Duan W et al (2015) Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). In Vitro Cell Dev Biol Anim 51:249–263. https://doi.org/10.1007/s11626-014-9832-4
Huai J, Zhang Z (2019) Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front Neurol 10:527. https://doi.org/10.3389/fneur.2019.00527
Article PubMed PubMed Central Google Scholar
Jiang Y, Tang X, Deng P et al (2023) The neuroprotective role of fisetin in different neurological diseases: a systematic review. Mol Neurobiol 60:6383–6394. https://doi.org/10.1007/s12035-023-03469-7
Jo C, Gundemir S, Pritchard S et al (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496. https://doi.org/10.1038/ncomms4496
Joshi G, Gan KA, Johnson DA, Johnson JA (2015) Increased Alzheimer’s disease-like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 36:664–679. https://doi.org/10.1016/j.neurobiolaging.2014.09.004
Kim S, Choi KJ, Cho SJ et al (2016) Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep 6:24933. https://doi.org/10.1038/srep24933
Article PubMed PubMed Central Google Scholar
Li X, Lu L, Bush DJ et al (2009) Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3′-untranslated region. J Neurochem 108:1032–1044. https://doi.org/10.1111/j.1471-4159.2008.05856.x
Article PubMed PubMed Central Google Scholar
Li J, Tian M, Hua T et al (2021) Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 17:4062–4082. https://doi.org/10.1080/15548627.2021.1900498
Article PubMed PubMed Central Google Scholar
Li J, Song M, Moh S, Kim H, Kim DH (2019) Cytoplasmic restriction of mutated SOD1 impairs the DNA repair process in spinal cord neurons. Cells 8.https://doi.org/10.3390/cells8121502
Liu S, Yao S, Yang H, Liu S, Wang Y (2023) Autophagy: regulator of cell death. Cell Death Dis 14:648. https://doi.org/10.1038/s41419-023-06154-8
Article PubMed PubMed Central Google Scholar
Lu L, Wang S, Zheng L et al (2009) Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor. J Biol Chem 284:33989–33998. https://doi.org/10.1074/jbc.M109.067918
Article PubMed PubMed Central Google Scholar
Marrone L, Drexler HCA, Wang J et al (2019) FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathol 138:67–84. https://doi.org/10.1007/s00401-019-01998-x
Article PubMed PubMed Central Google Scholar
Mitsui S, Otomo A, Nozaki M et al (2018) Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1(H46R)-expressing ALS mouse model. Mol Brain 11:30. https://doi.org/10.1186/s13041-018-0373-8
Article PubMed PubMed Central Google Scholar
Muratet F, Teyssou E, Chiot A et al (2021) Impact of a frequent nearsplice SOD1 variant in amyotrophic lateral sclerosis: optimising SOD1 genetic screening for gene therapy opportunities. J Neurol Neurosurg Psychiatry 92:942–949. https://doi.org/10.1136/jnnp-2020-325921
Nguyen DKH, Thombre R, Wang J (2019) Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 697:34–48. https://doi.org/10.1016/j.neulet.2018.04.006
Ozturk H, Basoglu H, Yorulmaz N, Aydin-Abidin S, Abidin I (2022) Fisetin decreases the duration of ictal-like discharges in mouse hippocampal slices. J Biol Phys 48:355–368. https://doi.org/10.1007/s10867-022-09612-0
Article PubMed PubMed Central Google Scholar
Pasinelli P, Belford ME, Lennon N et al (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43:19–30. https://doi.org/10.1016/j.neuron.2004.06.021
Petri S, Körner S, Kiaei M (2012) Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int 2012:878030. https://doi.org/10.1155/2012/878030
Article PubMed PubMed Central Google Scholar
Prudencio M, Borchelt DR (2011) Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 6:77. https://doi.org/10.1186/1750-1326-6-77
Article PubMed PubMed Central Google Scholar
Sheng Y, Chattopadhyay M, Whitelegge J, Valentine JS (2012) SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12:2560–2572. https://doi.org/10.2174/1568026611212220010
Shi Q, Jin X, Zhang P et al (2022) SPOP mutations promote p62/SQSTM1-dependent autophagy and Nrf2 activation in prostate cancer. Cell Death Differ 29:1228–1239. https://doi.org/10.1038/s41418-021-00913-w
Comments (0)