Alshuhri MS, Gallagher L, McCabe C, Holmes WM (2020) Change in CSF dynamics responsible for ICP elevation after ischemic stroke in rats: a new mechanism for unexplained END? Transl Stroke Res 11:310–318. https://doi.org/10.1007/s12975-019-00719-6
Article CAS PubMed Google Scholar
Barichello T, Generoso JS, Collodel A et al (2021) The blood-brain barrier dysfunction in sepsis. Tissue Barriers 9:1840912. https://doi.org/10.1080/21688370.2020.1840912
Article CAS PubMed Google Scholar
Baril A-A, Pinheiro AA, Himali JJ et al (2022) Lighter sleep is associated with higher enlarged perivascular spaces burden in middle-aged and elderly individuals. Sleep Med 100:558–564. https://doi.org/10.1016/j.sleep.2022.10.006
Article PubMed PubMed Central Google Scholar
Benakis C, Llovera G, Liesz A (2018) The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord 11:. https://doi.org/10.1177/1756286418783708
Bosche B, Mergenthaler P, Doeppner TR et al (2020) Complex clearance mechanisms after intraventricular hemorrhage and rt-PA treatment—a review on clinical trials. Transl Stroke Res 11:337–344. https://doi.org/10.1007/s12975-019-00735-6
Chen J, He J, Ni R et al (2019) Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell 49:697-710.e5. https://doi.org/10.1016/j.devcel.2019.03.022
Article CAS PubMed Google Scholar
Choi YH, Laaker C, Hsu M et al (2021) Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke. Int J Mol Sci 22:9486. https://doi.org/10.3390/ijms22179486
Article CAS PubMed PubMed Central Google Scholar
Cieri MB, Ramos AJ (2025) Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 20:973–989. https://doi.org/10.4103/NRR.NRR-D-23-02091
Article CAS PubMed Google Scholar
Clausen BH, Lambertsen KL, Babcock AA et al (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 5:46. https://doi.org/10.1186/1742-2094-5-46
Article CAS PubMed PubMed Central Google Scholar
Dai W, Yang M, Xia P et al (2022) A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 13:4825. https://doi.org/10.1038/s41467-022-32556-x
Article CAS PubMed PubMed Central Google Scholar
Ekanayake A, Peiris S, Ahmed B, et al (2024) A review of the role of estrogens in olfaction, sleep and glymphatic functionality in relation to sex disparity in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 39:. https://doi.org/10.1177/15333175241272025
Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI. Stroke 45:3092–3096. https://doi.org/10.1161/STROKEAHA.114.006617
Article CAS PubMed Google Scholar
Gao Y, Liu K, Zhu J (2023) Glymphatic system: an emerging therapeutic approach for neurological disorders. Front Mol Neurosci 16:. https://doi.org/10.3389/fnmol.2023.1138769
Generoso JS, Thorsdottir S, Collodel A, et al (2022) Dysfunctional glymphatic system with disrupted aquaporin 4 expression pattern on astrocytes causes bacterial product accumulation in the CSF during pneumococcal meningitis. mBio 13:. https://doi.org/10.1128/mbio.01886-22
Giannetto M, Xia M, Stæger FF et al (2020) Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice. Sci Rep 10:16073. https://doi.org/10.1038/s41598-020-72621-3
Article CAS PubMed PubMed Central Google Scholar
Goulay R, Mena Romo L, Hol EM, Dijkhuizen RM (2020) From stroke to dementia: a comprehensive review exposing tight interactions between stroke and amyloid-β formation. Transl Stroke Res 11:601–614. https://doi.org/10.1007/s12975-019-00755-2
Harrison IF, Ismail O, Machhada A et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143:2576–2593. https://doi.org/10.1093/brain/awaa179
Article PubMed PubMed Central Google Scholar
Hlauschek G, Nicolo J, Sinclair B et al (2024) Role of the glymphatic system and perivascular spaces as a potential biomarker for post-stroke epilepsy. Epilepsia Open 9:60–76. https://doi.org/10.1002/epi4.12877
Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:. https://doi.org/10.1161/STROKEAHA.112.678698
Iliff JJ, Wang M, Liao Y, et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:. https://doi.org/10.1126/scitranslmed.3003748
Ishimaru S, Okada Y, Mies G, Hossmann K-A (1993) Relationship between blood flow and blood-brain barrier permeability of sodium and albumin in focal ischaemia of rats: a triple tracer autoradiographic study. Acta Neurochir (Wien) 120:72–80. https://doi.org/10.1007/BF02001473
Article CAS PubMed Google Scholar
Keuters MH, Antila S, Immonen R et al (2024) The impact of VEGF-C-induced dural lymphatic vessel growth on ischemic stroke pathology. Transl Stroke Res. https://doi.org/10.1007/s12975-024-01262-9
Article PubMed PubMed Central Google Scholar
Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271
Article CAS PubMed PubMed Central Google Scholar
Lee D-H, Lee E, Park S-W et al (2024) Pathogenesis of cerebral small vessel disease: role of the glymphatic system dysfunction. Int J Mol Sci 25:8752. https://doi.org/10.3390/ijms25168752
Article CAS PubMed PubMed Central Google Scholar
Li C, Lin L, Sun C, et al (2022) Glymphatic system in the thalamus, secondary degeneration area was severely impaired at 2nd week after transient occlusion of the middle cerebral artery in rats. Front Neurosci 16:. https://doi.org/10.3389/fnins.2022.997743
Licastro E, Pignataro G, Iliff JJ et al (2024) Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 7:229. https://doi.org/10.1038/s42003-024-05911-5
Article PubMed PubMed Central Google Scholar
Liu K, Zhu J, Chang Y, et al (2021) Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus. JCI Insight 6:. https://doi.org/10.1172/jci.insight.151835
Lv T, Zhao B, Hu Q, Zhang X (2021) The glymphatic system: a novel therapeutic target for stroke treatment. Front Aging Neurosci 13:. https://doi.org/10.3389/fnagi.2021.689098
Ma Y, Han Y (2024) Targeting the brain’s glymphatic pathway: a novel therapeutic approach for cerebral small vessel disease. Neural Regen Res. https://doi.org/10.4103/NRR.NRR-D-24-00821
Article PubMed PubMed Central Google Scholar
Machado RS, Tenfen L, Joaquim L et al (2022) Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol 306:103963. https://doi.org/10.1016/j.resp.2022.103963
Article CAS PubMed Google Scholar
Mages B, Aleithe S, Blietz A et al (2019) Simultaneous alterations of oligodendrocyte-specific CNP, astrocyte-specific AQP4 and neuronal NF-L demarcate ischemic tissue after experimental stroke in mice. Neurosci Lett 711:134405. https://doi.org/10.1016/j.neulet.2019.134405
Article CAS PubMed Google Scholar
Manwani B, Bentivegna K, Benashski SE et al (2015) Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. J Cereb Blood Flow Metab 35:221–229. https://doi.org/10.1038/jcbfm.2014.186
Article CAS PubMed Google Scholar
Mathias K, Machado RS, Cardoso T et al (2024a) The blood-cerebrospinal fluid barrier dysfunction in brain disorders and stroke: why, how, what for? Neuromolecular Med 26:38. https://doi.org/10.1007/s12017-024-08806-0
Article CAS PubMed Google Scholar
Mathias K, Machado RS, Stork S et al (2024b) Short-chain fatty acid on blood-brain barrier and glial function in ischemic stroke. Life Sci 354:122979. https://doi.org/10.1016/j.lfs.2024.122979
Article CAS PubMed Google Scholar
Mathias K, Machado RS, Stork S et al (2024c) Blood-brain barrier permeability in the ischemic stroke: an update. Microvasc Res 151:104621. https://doi.org/10.1016/j.mvr.2023.104621
Comments (0)