Impaired Flow: Glymphatic Dysfunction in Ischemic Stroke and the Influence of Sex

Alshuhri MS, Gallagher L, McCabe C, Holmes WM (2020) Change in CSF dynamics responsible for ICP elevation after ischemic stroke in rats: a new mechanism for unexplained END? Transl Stroke Res 11:310–318. https://doi.org/10.1007/s12975-019-00719-6

Article  CAS  PubMed  Google Scholar 

Barichello T, Generoso JS, Collodel A et al (2021) The blood-brain barrier dysfunction in sepsis. Tissue Barriers 9:1840912. https://doi.org/10.1080/21688370.2020.1840912

Article  CAS  PubMed  Google Scholar 

Baril A-A, Pinheiro AA, Himali JJ et al (2022) Lighter sleep is associated with higher enlarged perivascular spaces burden in middle-aged and elderly individuals. Sleep Med 100:558–564. https://doi.org/10.1016/j.sleep.2022.10.006

Article  PubMed  PubMed Central  Google Scholar 

Benakis C, Llovera G, Liesz A (2018) The meningeal and choroidal infiltration routes for leukocytes in stroke. Ther Adv Neurol Disord 11:. https://doi.org/10.1177/1756286418783708

Bosche B, Mergenthaler P, Doeppner TR et al (2020) Complex clearance mechanisms after intraventricular hemorrhage and rt-PA treatment—a review on clinical trials. Transl Stroke Res 11:337–344. https://doi.org/10.1007/s12975-019-00735-6

Article  PubMed  Google Scholar 

Chen J, He J, Ni R et al (2019) Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell 49:697-710.e5. https://doi.org/10.1016/j.devcel.2019.03.022

Article  CAS  PubMed  Google Scholar 

Choi YH, Laaker C, Hsu M et al (2021) Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke. Int J Mol Sci 22:9486. https://doi.org/10.3390/ijms22179486

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cieri MB, Ramos AJ (2025) Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 20:973–989. https://doi.org/10.4103/NRR.NRR-D-23-02091

Article  CAS  PubMed  Google Scholar 

Clausen BH, Lambertsen KL, Babcock AA et al (2008) Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 5:46. https://doi.org/10.1186/1742-2094-5-46

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Yang M, Xia P et al (2022) A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 13:4825. https://doi.org/10.1038/s41467-022-32556-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekanayake A, Peiris S, Ahmed B, et al (2024) A review of the role of estrogens in olfaction, sleep and glymphatic functionality in relation to sex disparity in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 39:. https://doi.org/10.1177/15333175241272025

Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI. Stroke 45:3092–3096. https://doi.org/10.1161/STROKEAHA.114.006617

Article  CAS  PubMed  Google Scholar 

Gao Y, Liu K, Zhu J (2023) Glymphatic system: an emerging therapeutic approach for neurological disorders. Front Mol Neurosci 16:. https://doi.org/10.3389/fnmol.2023.1138769

Generoso JS, Thorsdottir S, Collodel A, et al (2022) Dysfunctional glymphatic system with disrupted aquaporin 4 expression pattern on astrocytes causes bacterial product accumulation in the CSF during pneumococcal meningitis. mBio 13:. https://doi.org/10.1128/mbio.01886-22

Giannetto M, Xia M, Stæger FF et al (2020) Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice. Sci Rep 10:16073. https://doi.org/10.1038/s41598-020-72621-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goulay R, Mena Romo L, Hol EM, Dijkhuizen RM (2020) From stroke to dementia: a comprehensive review exposing tight interactions between stroke and amyloid-β formation. Transl Stroke Res 11:601–614. https://doi.org/10.1007/s12975-019-00755-2

Article  PubMed  Google Scholar 

Harrison IF, Ismail O, Machhada A et al (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143:2576–2593. https://doi.org/10.1093/brain/awaa179

Article  PubMed  PubMed Central  Google Scholar 

Hlauschek G, Nicolo J, Sinclair B et al (2024) Role of the glymphatic system and perivascular spaces as a potential biomarker for post-stroke epilepsy. Epilepsia Open 9:60–76. https://doi.org/10.1002/epi4.12877

Article  PubMed  Google Scholar 

Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:. https://doi.org/10.1161/STROKEAHA.112.678698

Iliff JJ, Wang M, Liao Y, et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:. https://doi.org/10.1126/scitranslmed.3003748

Ishimaru S, Okada Y, Mies G, Hossmann K-A (1993) Relationship between blood flow and blood-brain barrier permeability of sodium and albumin in focal ischaemia of rats: a triple tracer autoradiographic study. Acta Neurochir (Wien) 120:72–80. https://doi.org/10.1007/BF02001473

Article  CAS  PubMed  Google Scholar 

Keuters MH, Antila S, Immonen R et al (2024) The impact of VEGF-C-induced dural lymphatic vessel growth on ischemic stroke pathology. Transl Stroke Res. https://doi.org/10.1007/s12975-024-01262-9

Article  PubMed  PubMed Central  Google Scholar 

Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee D-H, Lee E, Park S-W et al (2024) Pathogenesis of cerebral small vessel disease: role of the glymphatic system dysfunction. Int J Mol Sci 25:8752. https://doi.org/10.3390/ijms25168752

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Lin L, Sun C, et al (2022) Glymphatic system in the thalamus, secondary degeneration area was severely impaired at 2nd week after transient occlusion of the middle cerebral artery in rats. Front Neurosci 16:. https://doi.org/10.3389/fnins.2022.997743

Licastro E, Pignataro G, Iliff JJ et al (2024) Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 7:229. https://doi.org/10.1038/s42003-024-05911-5

Article  PubMed  PubMed Central  Google Scholar 

Liu K, Zhu J, Chang Y, et al (2021) Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus. JCI Insight 6:. https://doi.org/10.1172/jci.insight.151835

Lv T, Zhao B, Hu Q, Zhang X (2021) The glymphatic system: a novel therapeutic target for stroke treatment. Front Aging Neurosci 13:. https://doi.org/10.3389/fnagi.2021.689098

Ma Y, Han Y (2024) Targeting the brain’s glymphatic pathway: a novel therapeutic approach for cerebral small vessel disease. Neural Regen Res. https://doi.org/10.4103/NRR.NRR-D-24-00821

Article  PubMed  PubMed Central  Google Scholar 

Machado RS, Tenfen L, Joaquim L et al (2022) Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol 306:103963. https://doi.org/10.1016/j.resp.2022.103963

Article  CAS  PubMed  Google Scholar 

Mages B, Aleithe S, Blietz A et al (2019) Simultaneous alterations of oligodendrocyte-specific CNP, astrocyte-specific AQP4 and neuronal NF-L demarcate ischemic tissue after experimental stroke in mice. Neurosci Lett 711:134405. https://doi.org/10.1016/j.neulet.2019.134405

Article  CAS  PubMed  Google Scholar 

Manwani B, Bentivegna K, Benashski SE et al (2015) Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. J Cereb Blood Flow Metab 35:221–229. https://doi.org/10.1038/jcbfm.2014.186

Article  CAS  PubMed  Google Scholar 

Mathias K, Machado RS, Cardoso T et al (2024a) The blood-cerebrospinal fluid barrier dysfunction in brain disorders and stroke: why, how, what for? Neuromolecular Med 26:38. https://doi.org/10.1007/s12017-024-08806-0

Article  CAS  PubMed  Google Scholar 

Mathias K, Machado RS, Stork S et al (2024b) Short-chain fatty acid on blood-brain barrier and glial function in ischemic stroke. Life Sci 354:122979. https://doi.org/10.1016/j.lfs.2024.122979

Article  CAS  PubMed  Google Scholar 

Mathias K, Machado RS, Stork S et al (2024c) Blood-brain barrier permeability in the ischemic stroke: an update. Microvasc Res 151:104621. https://doi.org/10.1016/j.mvr.2023.104621

Article 

Comments (0)

No login
gif