Non-targeted and Targeted Metabolomics Techniques Reveal Striatal Metabolome Characteristics in the Ketamine-Induced Conditioned Place Preference Mice Model

Balda MA, Anderson KL, Itzhak Y (2006) Adolescent and adult responsiveness to the incentive value of cocaine reward in mice: role of neuronal nitric oxide synthase (nNOS) gene. Neuropharmacology 51(2):341–349. https://doi.org/10.1016/j.neuropharm.2006.03.026

Article  CAS  PubMed  Google Scholar 

Barle EL, Looser R, Cerne M, Bechter R (2012) The value of acute toxicity testing of pharmaceuticals for estimation of human response. Regul Toxicol Pharmacol 62(3):412–418. https://doi.org/10.1016/j.yrtph.2012.01.005

Article  CAS  PubMed  Google Scholar 

Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. https://doi.org/10.1124/pr.110.002642

Article  CAS  PubMed  Google Scholar 

Benoit-Marand M, Borrelli E, Gonon F (2001) Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 21(23):9134–9141. https://doi.org/10.1523/jneurosci.21-23-09134.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benoit-Marand M, Ballion B, Borrelli E, Boraud T, Gonon F (2011) Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J Neurochem 116(3):449–458. https://doi.org/10.1111/j.1471-4159.2010.07125.x

Article  CAS  PubMed  Google Scholar 

Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA (2023) Ketamine and the disinhibition hypothesis: neurotrophic factor-mediated treatment of depression. Pharmaceuticals (Basel) 16(5):742. https://doi.org/10.3390/ph16050742

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capasso A, Loizzo A (2001) Purinoreceptors are involved in the control of acute morphine withdrawal. Life Sci 69(18):2179–2188. https://doi.org/10.1016/s0024-3205(01)01313-3

Article  CAS  PubMed  Google Scholar 

Chang L, Zhang K, Pu Y, Qu Y, Wang SM, Xiong Z, Ren Q, Dong C, Fujita Y, Hashimoto K (2019) Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav 181:53–59. https://doi.org/10.1016/j.pbb.2019.04.008

Article  CAS  PubMed  Google Scholar 

Chen L, Lu W, Wang L, Xing X, Chen Z, Teng X, Zeng X, Muscarella AD, Shen Y, Cowan A, McReynolds MR, Kennedy BJ, Lato AM, Campagna SR, Singh M, Rabinowitz JD (2021) Metabolite discovery through global annotation of untargeted metabolomics data. Nat Methods 18(11):1377–1385. https://doi.org/10.1038/s41592-021-01303-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Z, Peng Y, Wen J, Chen W, Pan W, Xu X, Lu X, Cai Q, Ge F, Fan Y, Wang J, Guan X (2023) Sex-specific metabolic signatures in methamphetamine addicts. Addict Biol 28(1):e13255. https://doi.org/10.1111/adb.13255

Article  CAS  PubMed  Google Scholar 

Darke S, Duflou J, Farrell M, Peacock A, Lappin J (2021) Characteristics and circumstances of death related to the self-administration of ketamine. Addiction (Abingdon, England) 116(2):339–345. https://doi.org/10.1111/add.15154

Article  PubMed  Google Scholar 

Dinis-Oliveira RJ (2019) Metabolism and metabolomics of opiates: a long way of forensic implications to unravel. J Forensic Leg Med 61:128–140. https://doi.org/10.1016/j.jflm.2018.12.005

Article  PubMed  Google Scholar 

Doke M, McLaughlin JP, Baniasadi H, Samikkannu T (2022) Sleep disorder and cocaine abuse impact purine and pyrimidine nucleotide metabolic signatures. Metabolites 12(9):869. https://doi.org/10.3390/metabo12090869

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domingo-Almenara X, Siuzdak G (2020) Metabolomics data processing using XCMS. Methods in Molecular Biology (Clifton, NJ) 2104:11–24. https://doi.org/10.1007/978-1-0716-0239-3_2

Article  CAS  Google Scholar 

Du Y, Du L, Cao J, Hölscher C, Feng Y, Su H, Wang Y, Yun KM (2017) Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats. Behav Brain Res 317:367–373. https://doi.org/10.1016/j.bbr.2016.10.001

Article  CAS  PubMed  Google Scholar 

Dudley E, Yousef M, Wang Y, Griffiths WJ (2010) Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol 80:45–83. https://doi.org/10.1016/b978-0-12-381264-3.00002-3

Article  CAS  PubMed  Google Scholar 

Ford CP (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282:13–22. https://doi.org/10.1016/j.neuroscience.2014.01.025

Article  CAS  PubMed  Google Scholar 

Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J (2022) Analytical metabolomics and applications in health, environmental and food science. Crit Rev Anal Chem 52(4):712–734. https://doi.org/10.1080/10408347.2020.1823811

Article  CAS  PubMed  Google Scholar 

Fuertig R, Ceci A, Camus SM, Bezard E, Luippold AH, Hengerer B (2016) LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain. Bioanalysis 8(18):1903–1917. https://doi.org/10.4155/bio-2016-0111

Article  CAS  PubMed  Google Scholar 

Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. Journal of Molecular Neuroscience : MN 26(2–3):209–220. https://doi.org/10.1385/jmn:26:2-3:209

Article  CAS  PubMed  Google Scholar 

Fuxe K, Marcellino D, Borroto-Escuela DO, Guescini M, Fernández-Dueñas V, Tanganelli S, Rivera A, Ciruela F, Agnati LF (2010) Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16(3):e18-42. https://doi.org/10.1111/j.1755-5949.2009.00126.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabach LA, Carlini VP, Monti MC, Maglio LE, De Barioglio SR, Perez MF (2013) Involvement of nNOS/NO/sGC/cGMP signaling pathway in cocaine sensitization and in the associated hippocampal alterations: does phosphodiesterase 5 inhibition help to drug vulnerability? Psychopharmacology 229(1):41–50. https://doi.org/10.1007/s00213-013-3084-y

Article  CAS  PubMed  Google Scholar 

Gao M, Rejaei D, Liu H (2016) Ketamine use in current clinical practice. Acta Pharmacol Sin 37(7):865–872. https://doi.org/10.1038/aps.2016.5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghanbari R, Sumner S (2018) Using metabolomics to investigate biomarkers of drug addiction. Trends Mol Med 24(2):197–205. https://doi.org/10.1016/j.molmed.2017.12.005

Article  CAS  PubMed  Google Scholar 

Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 21(19):7463–7473. https://doi.org/10.1523/jneurosci.21-19-07463.2001

Article  CAS  PubMed  Google Scholar 

Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. https://doi.org/10.1146/annurev.neuro.29.051605.113009

Article  CAS  PubMed  Google Scholar 

Ingrosso G, Cleare AJ, Juruena MF (2025) Is there a risk of addiction to ketamine during the treatment of depression? A systematic review of available literature. Journal of Psychopharmacology (Oxford, England) 39(1):49–65. https://doi.org/10.1177/02698811241303597

Article 

Comments (0)

No login
gif