Glial Cells in Alzheimer’s Disease: Pathogenic Mechanisms and Therapeutic Frontiers

Aisen PS, Gauthier S, Ferris SH, Saumier D, Haine D, Garceau D, ... Sampalis J (2011) Tramiprosate in mild-to-moderate Alzheimer’s disease–a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch Med Sci 7(1):102-111

Ait-Bouziad N, Chiki A, Limorenko G, Xiao S, Eliezer D, Lashuel HA (2020) Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule-and lipid-binding properties of Tau. Journal of Biological Chemistry 295(23):7905–7922

CAS  PubMed  PubMed Central  Google Scholar 

Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K, Fiacco TA (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:139

Ampofo E, Schmitt BM, Menger MD, Laschke MW (2017) The regulatory mechanisms of NG2/CSPG4 expression. Cellular & molecular biology letters 22:1–9

Google Scholar 

Ando K, Nagaraj S, Küçükali F, De Fisenne MA, Kosa AC, Doeraene E, ... Leroy K (2022) PICALM and Alzheimer’s disease: an update and perspectives. Cells 11(24):3994

Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain research bulletin 126:238–292

CAS  PubMed  Google Scholar 

Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. The Lancet Neurology 18(4):406–414

CAS  PubMed  Google Scholar 

Atri A (2019) Current and future treatments in Alzheimer’s disease. In: Seminars in neurology  39(02):227–240. Thieme Medical Publishers

Bao M, Hanabuchi S, Facchinetti V, Du Q, Bover L, Plumas J, ... Liu YJ (2012) CD2AP/SHIP1 complex positively regulates plasmacytoid dendritic cell receptor signaling by inhibiting the E3 ubiquitin ligase Cbl. J Immunol 189(2):786-792

Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, ... Landrieu I (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 11:204

Batista AF, Khan KA, Papavergi MT, Lemere CA (2024) The importance of complement-mediated immune signaling in Alzheimer’s disease pathogenesis. International Journal of Molecular Sciences 25(2):817

CAS  PubMed  PubMed Central  Google Scholar 

Beach TG, McGeer EG (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain research 463(2):357–361

CAS  PubMed  Google Scholar 

Beck TN, Nicolas E, Kopp MC, Golemis EA (2014) Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer’s disease. Oncoscience 1(7):486

PubMed  PubMed Central  Google Scholar 

Best L, Ghadery C, Pavese N, Tai YF, Strafella AP (2019) New and old TSPO PET radioligands for imaging brain microglial activation in neurodegenerative disease. Current neurology and neuroscience reports 19:1–10

Google Scholar 

Bittar A, Bhatt N, Kayed R (2020) Advances and considerations in AD tau-targeted immunotherapy. Neurobiology of disease 134:104707

CAS  PubMed  Google Scholar 

Biogen E (2019) Biogen and Eisai to discontinue phase 3 ENGAGE and EMERGE trials of aducanumab in Alzheimer’s disease [WWW Document].  http://investors.biogen.com/news-releases/news-release-details/biogen-and-eisai-discontinue-phase-3-engage-and-em. Accessed 4.13.20

Bonaiuto C, McDonald PP, Rossi F, Cassatella MA (1997) Activation of nuclear factor-κB by β-amyloid peptides and interferon-γ in murine microglia. Journal of neuroimmunology 77(1):51–56

CAS  PubMed  Google Scholar 

Bouvier DS, Jones EV, Quesseveur G, Davoli MA, Ferreira TA, Quirion R, ... Murai KK (2016) High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci Rep 6(1):24544

Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta neuropathologica 119:37–53

PubMed  Google Scholar 

Buhl E, Kim YA, Parsons T, Zhu B, Santa-Maria I, Lefort R, Hodge JJ (2022) Effects of Eph/ephrin signalling and human Alzheimer’s disease-associated EphA1 on Drosophila behaviour and neurophysiology. Neurobiology of Disease 170:105752

CAS  PubMed  Google Scholar 

Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nature reviews Drug discovery 7(7):575–590

CAS  PubMed  Google Scholar 

Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) Synantocytes: the fifth element. Journal of anatomy 207(6):695–706

PubMed  PubMed Central  Google Scholar 

Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, ...Willnow TE (2014) Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6(223):223ra20-223ra20

Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, ... Banati RB (2001) In-vivo measurement of activated microglia in dementia.  Lancet 358(9280):461-467

Cao H, Zhou X, Chen Y, Ip FC, Chen Y, Lai NC, ... Ip NY (2022) Association of SPI1 haplotypes with altered SPI1 gene expression and Alzheimer’s disease risk. J Alzheimers Dis 86(4):1861-1873

Cao Y, Yu F, Lyu Y, Lu X (2022) Promising candidates from drug clinical trials: implications for clinical treatment of Alzheimer’s disease in China. Frontiers in Neurology 13:1034243

Google Scholar 

Castelo-Branco G, Rawal N, Arenas E (2004) GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. Journal of cell science 117(24):5731–5737

CAS  PubMed  Google Scholar 

Chaudhary AR, Berger F, Berger CL, Hendricks AG (2018) Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 19(2):111–121

CAS  PubMed  Google Scholar 

Chen XQ, Mobley WC (2019) Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Frontiers in Neuroscience 13:659

PubMed  PubMed Central  Google Scholar 

Clayton K, Delpech JC, Herron S, Iwahara N, Ericsson M, Saito T, ... Ikezu T (2021) Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol Neurodegener 16:1-16

ClinicalTrials. gov (2014) Study to evaluate the safety, tolerability and the effect of BMS241027 on cerebrospinal fluid biomarkers in subjects with mild Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT01492374

ClinicalTrials.gov (2018a) Safety and immunogenicity of repeated doses of ABvac40 in patients with a-MCI or Vm-AD [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03461276

ClinicalTrials.gov (2019a) Study to evaluate the safety and tolerability of a new drug named Lu AF20513 in patients with mild Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT02388152

ClinicalTrials.gov (2019b) Study with Lu AF20513 in patients with mild Alzheimer’s disease (AD) or mild cognitive impairment (MCI) due to AD [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03819699

ClinicalTrials.gov (2019c) A study to evaluate the safety and tolerability of a new drug named Lu AF20513 in patients with mild Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03668405

ClinicalTrials.gov (2019d) Safety and efficacy study of gantenerumab in participants with early Alzheimer’s disease (AD) [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03444870

ClinicalTrials.gov (2019e) Safety and efficacy study of gantenerumab in participants with early Alzheimer’s disease (AD) [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03443973

ClinicalTrials.gov (2019f) A study to confirm safety and efficacy of BAN2401 in participants with early Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03887455

ClinicalTrials.gov (2019g) Phase 2 study of BIIB092 in participants with early Alzheimer’s disease (TANGO) [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03352557

ClinicalTrials.gov (2019h) A study to evaluate the efficacy and safety of ABBV-8E12 in subjects with early Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT02880956

ClinicalTrials.gov (2019i) A study to evaluate the efficacy and safety of RO7105705 in patients with prodromal to mild Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03289143

ClinicalTrials.gov (2019j) A study of SEMORINEMAB in patients with moderate Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03828747

ClinicalTrials.gov (2019l) A study of LY3303560 in participants with early symptomatic Alzheimer’s disease [WWW Document], Accessed 5.3.20. https://clinicaltrials.gov/ct2/show/NCT03518073

Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. Journal of Neuroscience 19(3):928–939

CAS  PubMed  PubMed Central  Google Scholar 

Coric V, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M, ... Berman RM (2015) Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA neurology 72(11):1324-1333

Cotter RL, Burke WJ, Thomas VS, Potter JF, Zheng J, Gendelman HE (1999) Insights into the neurodegenerative process of Alzheimer’s disease: a role for mononuclear phagocyte-associated inflammation and neurotoxicity. Journal of Leukocyte Biology 65(4):416–427. https://doi.org/10.1002/jlb.65.4.416

CAS  PubMed  Google Scholar 

Crehan H, Hardy J, Pocock J (2012) Microglia, Alzheimer’s disease, and complement. International Journal of Alzheimer’s Disease 2012(1):983640

PubMed  PubMed Central  Google Scholar 

d’Errico P, Ziegler-Waldkirch S, Aires V, Hoffmann P, Mezö C, Erny D, ... Meyer-Luehmann M (2022) Microglia contribute to the propagation of Aβ into unaffected brain tissue. Nat Neurosci 25(1):20-25

Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H (2008) Multiple sclerosis and Alzheimer’s disease. Annals of neurology 63(2):174–183

Google Scholar 

Dal Prà I, Chiarini A, Pacchiana R, Gardenal E, Chakravarthy B, F Whitfield J, Armato U (2014) Calcium-sensing receptors of human astrocyte-neuron teams: amyloid-β-driven mediators and therapeutic targets of Alzheimer’s disease. Curr Neuropharmacol 12(4):353-364

Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, ... Edison P (2018) Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141(9):2740-2754

Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neuroscience 24(2):476–488

CAS  PubMed  Google Scholar 

Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, Rose CM, ... Hanson JE (2022) Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nature Aging 2(9):837-850

DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW, ... Holtzman DM (2004) ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41(2):193-202

Di Benedetto G, Burgaletto C, Bellanca CM, Munafò A, Bernardini R, Cantarella G (2022) Role of microglia and astrocytes in Alzheimer’s disease: from neuroinflammation to Ca2+ homeostasis dysregulation. Cells 11(17):2728

PubMed  PubMed Central  Google Scholar 

Dong YX, Zhang HY, Li HY, Liu PH, Sui Y, Sun XH (2018) Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural regeneration research 13(5):908–914

CAS  PubMed  PubMed Central  Google Scholar 

Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, ... Mohs R (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369(4):341-350

Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta neuropathologica 118:5–36

CAS  PubMed  Google Scholar 

Dzamba D, Harantova L, Butenko O, Anderova M (2016) Glial cells–the key elements of Alzheimer’s disease. Current Alzheimer Research 13(8):894–911

CAS  PubMed  Google Scholar 

Efthymiou AG, Goate AM (2017) Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Molecular neurodegeneration 12:1–12

Google Scholar 

Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, ... Michelson D (2018) Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med 378(18):1691-1703

Emmerling MR, Watson MD, Raby CA, Spiegel K (2000) The role of complement in Alzheimer’s disease pathology. Biochimica et Biophysica Acta (BBA)Mol Basis Dis 1502(1):158-171

Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, ... Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nature Neurosci 24(3):312-325

Ettcheto M, Cano A, Sanchez-López E, Verdaguer E, Folch J, Auladell C, Camins A (2021) Masitinib for the treatment of Alzheimer’s disease. Neurodegenerative Disease Management 11(4):263–276

PubMed  Google Scholar 

Ewers M, Biechele G, Suárez‐Calvet M, Sacher C, Blume T, Morenas‐Rodriguez E, ... Franzmeier N (2020) Higher CSF sTREM2 and microglia activation are associated with slower rates of beta‐amyloid accumulation. EMBO Mol Med 12(9):e12308

Ewers M, Franzmeier N, Suárez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, ... Alzheimer’s Disease Neuroimaging Initiative (2019) Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci Transl Med 11(507):eaav6221

Eysert F, Coulon A, Boscher E, Vreulx AC, Flaig A, Mendes T, ... Chapuis J (2021) Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol Psychiatr 26(10):5592-5607

Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Current Neuropharmacology 16(5):508–518. https://doi.org/10.2174/1570159X166661

Comments (0)

No login
gif